Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Buchheim, Christoph [VerfasserIn]   i
 Liers, Frauke [VerfasserIn]   i
 Oswald, Marcus [VerfasserIn]   i
Titel:Speeding up IP-based algorithms for constrained quadratic 0-1 optimization
Verf.angabe:Christoph Buchheim, Frauke Liers, Marcus Oswald
E-Jahr:2010
Jahr:08 May 2010
Umfang:23 S.
Fussnoten:Gesehen am 09.03.2023
Titel Quelle:Enthalten in: Mathematical programming
Ort Quelle:Berlin : Springer, 1971
Jahr Quelle:2010
Band/Heft Quelle:124(2010), Seite 513-535
ISSN Quelle:1436-4646
Abstract:In many practical applications, the task is to optimize a non-linear objective function over the vertices of a well-studied polytope as, e.g., the matching polytope or the travelling salesman polytope (TSP). Prominent examples are the quadratic assignment problem and the quadratic knapsack problem; further applications occur in various areas such as production planning or automatic graph drawing. In order to apply branch-and-cut methods for the exact solution of such problems, the objective function has to be linearized. However, the standard linearization usually leads to very weak relaxations. On the other hand, problem-specific polyhedral studies are often time-consuming. Our goal is the design of general separation routines that can replace detailed polyhedral studies of the resulting polytope and that can be used as a black box. As unconstrained binary quadratic optimization is equivalent to the maximum-cut problem, knowledge about cut polytopes can be used in our setting. Other separation routines are inspired by the local cuts that have been developed by Applegate, Bixby, Chvátal and Cook for faster solution of large-scale traveling salesman instances. Finally, we apply quadratic reformulations of the linear constraints as proposed by Helmberg, Rendl and Weismantel for the quadratic knapsack problem. By extensive experiments, we show that a suitable combination of these methods leads to a drastic speedup in the solution of constrained quadratic 0-1 problems. We also discuss possible generalizations of these methods to arbitrary non-linear objective functions.
DOI:doi:10.1007/s10107-010-0377-3
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1007/s10107-010-0377-3
 DOI: https://doi.org/10.1007/s10107-010-0377-3
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:90C20
 90C27
 90C57
 Crossing minimization
 Local cuts
 Maximum-cut problem
 Quadratic knapsack
 Quadratic programming
 Similar subgraphs
K10plus-PPN:1838735291
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69050027   QR-Code
zum Seitenanfang