Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Batzilla, Alina [VerfasserIn]   i
 Lu, Junyan [VerfasserIn]   i
 Kivioja, Jarno [VerfasserIn]   i
 Putzker, Kerstin [VerfasserIn]   i
 Lewis, Joe [VerfasserIn]   i
 Zenz, Thorsten [VerfasserIn]   i
 Huber, Wolfgang [VerfasserIn]   i
Titel:Inferring tumor-specific cancer dependencies through integrating ex vivo drug response assays and drug-protein profiling
Verf.angabe:Alina Batzilla, Junyan Lu, Jarno Kivioja, Kerstin Putzker, Joe Lewis, Thorsten Zenz, Wolfgang Huber
E-Jahr:2022
Jahr:August 22, 2022
Umfang:19 S.
Fussnoten:Gesehen am 20.03.2023
Titel Quelle:Enthalten in: Public Library of SciencePLoS Computational Biology
Ort Quelle:San Francisco, Calif. : Public Library of Science, 2005
Jahr Quelle:2022
Band/Heft Quelle:18(2022), 8, Artikel-ID e1010438, Seite 1-19
ISSN Quelle:1553-7358
Abstract:The development of cancer therapies may be improved by the discovery of tumor-specific molecular dependencies. The requisite tools include genetic and chemical perturbations, each with its strengths and limitations. Chemical perturbations can be readily applied to primary cancer samples at large scale, but mechanistic understanding of hits and further pharmaceutical development is often complicated by the fact that a chemical compound has affinities to multiple proteins. To computationally infer specific molecular dependencies of individual cancers from their ex vivo drug sensitivity profiles, we developed a mathematical model that deconvolutes these data using measurements of protein-drug affinity profiles. Through integrating a drug-kinase profiling dataset and several drug response datasets, our method, DepInfeR, correctly identified known protein kinase dependencies, including the EGFR dependence of HER2+ breast cancer cell lines, the FLT3 dependence of acute myeloid leukemia (AML) with FLT3-ITD mutations and the differential dependencies on the B-cell receptor pathway in the two major subtypes of chronic lymphocytic leukemia (CLL). Furthermore, our method uncovered new subgroup-specific dependencies, including a previously unreported dependence of high-risk CLL on Checkpoint kinase 1 (CHEK1). The method also produced a detailed map of the kinase dependencies in a heterogeneous set of 117 CLL samples. The ability to deconvolute polypharmacological phenotypes into underlying causal molecular dependencies should increase the utility of high-throughput drug response assays for functional precision oncology.
DOI:doi:10.1371/journal.pcbi.1010438
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1371/journal.pcbi.1010438
 Volltext: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010438
 DOI: https://doi.org/10.1371/journal.pcbi.1010438
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Acute myeloid leukemia
 Breast cancer
 Cancers and neoplasms
 Chronic lymphoblastic leukemia
 Drug dependence
 Drug screening
 Gene expression
 Malignant tumors
K10plus-PPN:1839563168
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69053249   QR-Code
zum Seitenanfang