Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Konukoglu, Ender [VerfasserIn]   i
 Clatz, Olivier [VerfasserIn]   i
 Menze, Bjoern H. [VerfasserIn]   i
 Stieltjes, Bram [VerfasserIn]   i
 Weber, Marc-André [VerfasserIn]   i
 Mandonnet, Emmanuel [VerfasserIn]   i
 Delingette, HervÉ [VerfasserIn]   i
 Ayache, Nicholas [VerfasserIn]   i
Titel:Image guided personalization of reaction-diffusion type tumor growth models using modified anisotropic eikonal equations
Verf.angabe:Ender Konukoglu, Olivier Clatz, Bjoern H. Menze, Bram Stieltjes, Marc-André Weber, Emmanuel Mandonnet, Hervé Delingette and Nicholas Ayache
Jahr:2010
Umfang:19 S.
Fussnoten:Online veröffentlicht am 14. Juli 2009 ; Gesehen am 21.03.2023
Titel Quelle:Enthalten in: Institute of Electrical and Electronics EngineersIEEE transactions on medical imaging
Ort Quelle:New York, NY : Institute of Electrical and Electronics Engineers, 1982
Jahr Quelle:2010
Band/Heft Quelle:29(2010), 1 vom: Jan., Seite 77-95
ISSN Quelle:1558-254X
Abstract:Reaction-diffusion based tumor growth models have been widely used in the literature for modeling the growth of brain gliomas. Lately, recent models have started integrating medical images in their formulation. Including different tissue types, geometry of the brain and the directions of white matter fiber tracts improved the spatial accuracy of reaction-diffusion models. The adaptation of the general model to the specific patient cases on the other hand has not been studied thoroughly yet. In this paper, we address this adaptation. We propose a parameter estimation method for reaction-diffusion tumor growth models using time series of medical images. This method estimates the patient specific parameters of the model using the images of the patient taken at successive time instances. The proposed method formulates the evolution of the tumor delineation visible in the images based on the reaction-diffusion dynamics; therefore, it remains consistent with the information available. We perform thorough analysis of the method using synthetic tumors and show important couplings between parameters of the reaction-diffusion model. We show that several parameters can be uniquely identified in the case of fixing one parameter, namely the proliferation rate of tumor cells. Moreover, regardless of the value the proliferation rate is fixed to, the speed of growth of the tumor can be estimated in terms of the model parameters with accuracy. We also show that using the model-based speed, we can simulate the evolution of the tumor for the specific patient case. Finally, we apply our method to two real cases and show promising preliminary results.
DOI:doi:10.1109/TMI.2009.2026413
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1109/TMI.2009.2026413
 Volltext: https://ieeexplore.ieee.org/document/5165028
 DOI: https://doi.org/10.1109/TMI.2009.2026413
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Anisotropic magnetoresistance
 Biomedical imaging
 Brain modeling
 Equations
 Geometry
 Neoplasms
 Parameter estimation
 Performance analysis
 Solid modeling
 Tumors
K10plus-PPN:1839674385
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69053835   QR-Code
zum Seitenanfang