Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Siemsen, Katharina [VerfasserIn]   i
 Rajput, Sunil [VerfasserIn]   i
 Rasch, Florian [VerfasserIn]   i
 Taheri, Fereydoon [VerfasserIn]   i
 Adelung, Rainer [VerfasserIn]   i
 Lammerding, Jan [VerfasserIn]   i
 Selhuber-Unkel, Christine [VerfasserIn]   i
Titel:Tunable 3D hydrogel microchannel networks to study confined mammalian cell migration
Verf.angabe:Katharina Siemsen, Sunil Rajput, Florian Rasch, Fereydoon Taheri, Rainer Adelung, Jan Lammerding, and Christine Selhuber-Unkel
Jahr:2021
Umfang:11 S.
Fussnoten:Gesehen am 27.03.2023
Titel Quelle:Enthalten in: Advanced healthcare materials
Ort Quelle:Weinheim : Wiley-VCH, 2012
Jahr Quelle:2021
Band/Heft Quelle:10(2021), 23, Artikel-ID 2100625, Seite 1-11
ISSN Quelle:2192-2659
Abstract:Cells adapt and move due to chemical, physical, and mechanical cues from their microenvironment. It is therefore important to create materials that mimic human tissue physiology by surface chemistry, architecture, and dimensionality to control cells in biomedical settings. The impact of the environmental architecture is particularly relevant in the context of cancer cell metastasis, where cells migrate through small constrictions in their microenvironment to invade surrounding tissues. Here, a synthetic hydrogel scaffold with an interconnected, random, 3D microchannel network is presented that is functionalized with collagen to promote cell adhesion. It is shown that cancer cells can invade such scaffolds within days, and both the microarchitecture and stiffness of the hydrogel modulate cell invasion and nuclear dynamics of the cells. Specifically, it is found that cell migration through the microchannels is a function of hydrogel stiffness. In addition to this, it is shown that the hydrogel stiffness and confinement, influence the occurrence of nuclear envelope ruptures of cells. The tunable hydrogel microarchitecture and stiffness thus provide a novel tool to investigate cancer cell invasion as a function of the 3D microenvironment. Furthermore, the material provides a promising strategy to control cell positioning, migration, and cellular function in biological applications, such as tissue engineering.
DOI:doi:10.1002/adhm.202100625
URL:kostenfrei: Volltext: https://doi.org/10.1002/adhm.202100625
 kostenfrei: Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/adhm.202100625
 DOI: https://doi.org/10.1002/adhm.202100625
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:3D architecture
 cell migration
 confined microarchitecture
 hydrogels
 nuclear envelopes
K10plus-PPN:1840120568
Verknüpfungen:→ Zeitschrift
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69055985   QR-Code
zum Seitenanfang