Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Schröter, Julian [VerfasserIn]   i
 Dattner, Tal [VerfasserIn]   i
 Hüllein, Jennifer [VerfasserIn]   i
 Jayme, Alejandra [VerfasserIn]   i
 Heuveline, Vincent [VerfasserIn]   i
 Hoffmann, Georg F. [VerfasserIn]   i
 Kölker, Stefan [VerfasserIn]   i
 Lenz, Dominic [VerfasserIn]   i
 Opladen, Thomas [VerfasserIn]   i
 Popp, Bernt [VerfasserIn]   i
 Schaaf, Christian P. [VerfasserIn]   i
 Staufner, Christian [VerfasserIn]   i
 Syrbe, Steffen [VerfasserIn]   i
 Uhrig, Sebastian [VerfasserIn]   i
 Hübschmann, Daniel [VerfasserIn]   i
 Brennenstuhl, Heiko [VerfasserIn]   i
Titel:aRgus: multilevel visualization of non-synonymous single nucleotide variants & advanced pathogenicity score modeling for genetic vulnerability assessment
Verf.angabe:Julian Schroeter, Tal Dattner, Jennifer Huellein, Alejandra Jayme, Vincent Heuveline, Georg F. Hoffmann, Stefan Koelker, Dominic Lenz, Thomas Opladen, Bernt Popp, Christian P. Schaaf, Christian Staufner, Steffen Syrbe, Sebastian Uhrig, Daniel Huebschmann, Heiko Brennenstuhl
Jahr:2023
Umfang:7 S.
Fussnoten:Gesehen am 11.04.2023
Titel Quelle:Enthalten in: Computational and structural biotechnology journal
Ort Quelle:Gotenburg : Research Network of Computational and Structural Biotechnology (RNCSB), 2012
Jahr Quelle:2023
Band/Heft Quelle:21(2023), Seite 1077-1083
ISSN Quelle:2001-0370
Abstract:The widespread use of high-throughput sequencing techniques is leading to a rapidly increasing number of disease-associated variants of unknown significance and candidate genes. Integration of knowledge concerning their genetic, protein as well as functional and conservational aspects is necessary for an exhaustive assessment of their relevance and for prioritization of further clinical and functional studies investigating their role in human disease. To collect the necessary information, a multitude of different databases has to be accessed and data extraction from the original sources commonly is not user-friendly and requires advanced bioinformatics skills. This leads to a decreased data accessibility for a relevant number of potential users such as clinicians, geneticist, and clinical researchers. Here, we present aRgus (https://argus.urz.uniheidelberg.de/), a standalone webtool for simple extraction and intuitive visualization of multi-layered gene, protein, variant, and variant effect prediction data. aRgus provides interactive exploitation of these data within seconds for any known gene of the human genome. In contrast to existing online platforms for compilation of variant data, aRgus complements visualization of chromosomal exon-intron structure and protein domain annotation with ClinVar and gnomAD variant distributions as well as position-specific variant effect prediction score modeling. aRgus thereby enables timely assessment of protein regions vulnerable to variation with single amino acid resolution and provides numerous applications in variant and protein domain interpretation as well as in the design of in vitro experiments. (c) 2023 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
DOI:doi:10.1016/j.csbj.2023.01.027
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1016/j.csbj.2023.01.027
 Volltext: https://linkinghub.elsevier.com/retrieve/pii/S2001037023000235
 DOI: https://doi.org/10.1016/j.csbj.2023.01.027
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Computational genetics
 Pathogenicity scores
 Variant assessment
 Variant effect prediction
K10plus-PPN:184200820X
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69064164   QR-Code
zum Seitenanfang