Standort: ---
Exemplare:
---
| Online-Ressource |
Verfasst von: | Krebs, Johannes [VerfasserIn]  |
| Hirsch, Christian [VerfasserIn]  |
Titel: | Functional central limit theorems for persistent Betti numbers on cylindrical networks |
Verf.angabe: | Johannes Krebs, Christian Hirsch |
Jahr: | 2022 |
Umfang: | 20 S. |
Fussnoten: | First published: 12 March 2021 ; Gesehen am 17.04.2023 |
Titel Quelle: | Enthalten in: Scandinavian journal of statistics |
Ort Quelle: | Oxford : Wiley-Blackwell, 1974 |
Jahr Quelle: | 2022 |
Band/Heft Quelle: | 49(2022), 1, Seite 427-454 |
ISSN Quelle: | 1467-9469 |
Abstract: | We study functional central limit theorems for persistent Betti numbers obtained from networks defined on a Poisson point process. The limit is formed in large volumes of cylindrical shape stretching only in one dimension. The results cover a directed sublevel-filtration for stabilizing networks and the Čech and Vietoris-Rips complex on the random geometric graph. The presented functional central limit theorems open the door to a variety of statistical applications in topological data analysis and we consider goodness-of-fit tests in a simulation study. |
DOI: | doi:10.1111/sjos.12524 |
URL: | kostenfrei: Volltext: https://doi.org/10.1111/sjos.12524 |
| kostenfrei: Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1111/sjos.12524 |
| DOI: https://doi.org/10.1111/sjos.12524 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | functional central limit theorems |
| goodness-of-fit tests |
| graphical networks |
| persistent Betti numbers |
| stochastic geometry |
| topological data analysis |
K10plus-PPN: | 1842789538 |
Verknüpfungen: | → Zeitschrift |
|
|
| |
Lokale URL UB: | Zum Volltext |
Functional central limit theorems for persistent Betti numbers on cylindrical networks / Krebs, Johannes [VerfasserIn]; 2022 (Online-Ressource)
69065916