Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Piras, Anna [VerfasserIn]   i
 Ehlert, Christopher [VerfasserIn]   i
 Gryn’ova, Ganna [VerfasserIn]   i
Titel:Sensing and sensitivity
Titelzusatz:computational chemistry of graphene-based sensors
Verf.angabe:Anna Piras, Christopher Ehlert, Ganna Gryn'ova
Jahr:2021
Umfang:19 S.
Fussnoten:Gesehen am 17.04.2023
Titel Quelle:Enthalten in: Wiley interdisciplinary reviews / Computational Molecular Science
Ort Quelle:Malden, MA : Wiley-Blackwell, 2011
Jahr Quelle:2021
Band/Heft Quelle:11(2021), 5, Artikel-ID e1526, Seite 1-19
ISSN Quelle:1759-0884
Abstract:Highly efficient, tunable, biocompatible, and environmentally friendly electrochemical sensors featuring graphene-based materials pose a formidable challenge for computational chemistry. In silico rationalization, optimization and, ultimately, prediction of their performance requires exploring a vast structural space of potential surface-analyte complexes, further complicated by the presence of various defects and functionalities within the infinite graphene lattice. This immense number of systems and their periodic nature greatly limit the choice of computational tools applicable at a reasonable cost. An alternative approach using finite nanoflake models opens the doors to many more advanced and accurate electronic structure methods, while sacrificing the realism of representation. Locating the surface-analyte complex is followed by an in-depth in silico analysis of its energetic and electronic properties using, for example, energy decomposition schemes, as well as simulation of the signal, for example, a zero-bias transmission spectra or a current-voltage curve, by means of the nonequilibrium Green's function method. These and other properties are examined in the context of a sensor's selectivity, sensitivity, and limit of detection with an aim to establish design principles for future devices. Herein, we analyze the advantages and limitations of diverse computational chemistry methods used at each of these steps in simulating graphene-based electrochemical sensors. We present outstanding challenges toward predictive models and sketch possible solutions involving such contemporary techniques as multiscale simulations and high-throughput screening. This article is categorized under: Structure and Mechanism > Computational Materials Science Electronic Structure Theory > Density Functional Theory Electronic Structure Theory > Ab Initio Electronic Structure Methods
DOI:doi:10.1002/wcms.1526
URL:kostenfrei: Volltext: https://doi.org/10.1002/wcms.1526
 kostenfrei: Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1526
 DOI: https://doi.org/10.1002/wcms.1526
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:adsorption energy
 computational chemistry
 electrochemical sensor
 graphene
 interactions
 noncovalent
K10plus-PPN:1842942913
Verknüpfungen:→ Zeitschrift
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69066019   QR-Code
zum Seitenanfang