Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Noja, Simone [VerfasserIn]   i
Titel:On the geometry of forms on supermanifolds
Verf.angabe:Simone Noja
E-Jahr:2023
Jahr:20 March 2023
Umfang:71 S.
Fussnoten:Gesehen am 19.04.2023
Titel Quelle:Enthalten in: Differential geometry and its applications
Ort Quelle:Amsterdam [u.a.] : Elsevier Science Publ., 1991
Jahr Quelle:2023
Band/Heft Quelle:88(2023) vom: März, Artikel-ID 101999, Seite 1-71
Abstract:This paper provides a rigorous account on the geometry of forms on supermanifolds, with a focus on its algebraic-geometric aspects. First, we introduce the de Rham complex of differential forms and we compute its cohomology. We then discuss three intrinsic definitions of the Berezinian sheaf of a supermanifold - as a quotient sheaf, via cohomology of the super Koszul complex or via cohomology of the total de Rham complex. Further, we study the properties of the Berezinian sheaf, showing in particular that it defines a right D-module. Then we introduce integral forms and their complex and we compute their cohomology, by providing a suitable Poincaré lemma. We show that the complexes of differential forms and integral forms are quasi-isomorphic and their cohomology computes the de Rham cohomology of the reduced space of the supermanifold. The notion of Berezin integral is then introduced and put to good use to prove the superanalog of Stokes' theorem and Poincaré duality, which relates differential and integral forms on supermanifolds. Finally, a different point of view is discussed by introducing the total tangent supermanifold and (integrable) pseudoforms in a new way. In this context, it is shown that a particular class of integrable pseudoforms having a distributional dependence supported at a point on the fibers are isomorphic to integral forms. Within the general overview, several new proofs of results are scattered.
DOI:doi:10.1016/j.difgeo.2023.101999
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1016/j.difgeo.2023.101999
 Volltext: https://www.sciencedirect.com/science/article/pii/S0926224523000256
 DOI: https://doi.org/10.1016/j.difgeo.2023.101999
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Berezinian sheaf
 Differential and integral forms
 Integration on supermanifolds
 Supermanifolds
K10plus-PPN:1843142449
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69067057   QR-Code
zum Seitenanfang