Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Raiƫă, Bogdan [VerfasserIn]   i
 Rüland, Angkana [VerfasserIn]   i
 Tissot, Camillo [VerfasserIn]   i
Titel:On scaling properties for two-state problems and for a aingularly perturbed T3 structure
Verf.angabe:Bogdan Raiţă, Angkana Rüland, Camillo Tissot
E-Jahr:2023
Jahr:17 March 2023
Umfang:50 S.
Fussnoten:Im Titel ist die Zahl 3 tiefgestellt ; Gesehen am 24.04.2023
Titel Quelle:Enthalten in: Acta applicandae mathematicae
Ort Quelle:[S.l.] : Proquest, 1983
Jahr Quelle:2023
Band/Heft Quelle:184(2023) vom: März, Artikel-ID 5, Seite 1-50
ISSN Quelle:1572-9036
Abstract:In this article we study quantitative rigidity properties for the compatible and incompatible two-state problems for suitable classes of A-free differential inclusions and for a singularly perturbed T3 structure for the divergence operator. In particular, in the compatible setting of the two-state problem we prove that all homogeneous, first order, linear operators with affine boundary data which enforce oscillations yield the typical ϵ23-lower scaling bounds. As observed in Chan and Conti (Math. Models Methods Appl. Sci. 25(06):1091–1124, 2015) for higher order operators this may no longer be the case. Revisiting the example from Chan and Conti (Math. Models Methods Appl. Sci. 25(06):1091–1124, 2015), we show that this is reflected in the structure of the associated symbols and that this can be exploited for a new Fourier based proof of the lower scaling bound. Moreover, building on Rüland and Tribuzio (Arch. Ration. Mech. Anal. 243(1):401–431, 2022); Garroni and Nesi (Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 460(2046):1789–1806, 2004, https://doi.org/10.1098/rspa.2003.1249 [Titel anhand dieser DOI in Citavi-Projekt übernehmen] ); Palombaro and Ponsiglione (Asymptot. Anal. 40(1):37–49, 2004), we discuss the scaling behavior of a T3 structure for the divergence operator. We prove that as in Rüland and Tribuzio (Arch. Ration. Mech. Anal. 243(1):401–431, 2022) this yields a non-algebraic scaling law.
DOI:doi:10.1007/s10440-023-00557-7
URL:kostenfrei: Volltext: https://doi.org/10.1007/s10440-023-00557-7
 DOI: https://doi.org/10.1007/s10440-023-00557-7
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:35F05
 35Q74
 74G99
 74N05
 AA-Free inclusions
 Divergence T3T3
 Phase transformation
 Two-well problem
K10plus-PPN:1843406799
Verknüpfungen:→ Zeitschrift
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69068341   QR-Code
zum Seitenanfang