Standort: ---
Exemplare:
---
| Online-Ressource |
Verfasst von: | Raiƫă, Bogdan [VerfasserIn]  |
| Rüland, Angkana [VerfasserIn]  |
| Tissot, Camillo [VerfasserIn]  |
Titel: | On scaling properties for two-state problems and for a aingularly perturbed T3 structure |
Verf.angabe: | Bogdan Raiţă, Angkana Rüland, Camillo Tissot |
E-Jahr: | 2023 |
Jahr: | 17 March 2023 |
Umfang: | 50 S. |
Fussnoten: | Im Titel ist die Zahl 3 tiefgestellt ; Gesehen am 24.04.2023 |
Titel Quelle: | Enthalten in: Acta applicandae mathematicae |
Ort Quelle: | [S.l.] : Proquest, 1983 |
Jahr Quelle: | 2023 |
Band/Heft Quelle: | 184(2023) vom: März, Artikel-ID 5, Seite 1-50 |
ISSN Quelle: | 1572-9036 |
Abstract: | In this article we study quantitative rigidity properties for the compatible and incompatible two-state problems for suitable classes of A-free differential inclusions and for a singularly perturbed T3 structure for the divergence operator. In particular, in the compatible setting of the two-state problem we prove that all homogeneous, first order, linear operators with affine boundary data which enforce oscillations yield the typical ϵ23-lower scaling bounds. As observed in Chan and Conti (Math. Models Methods Appl. Sci. 25(06):1091–1124, 2015) for higher order operators this may no longer be the case. Revisiting the example from Chan and Conti (Math. Models Methods Appl. Sci. 25(06):1091–1124, 2015), we show that this is reflected in the structure of the associated symbols and that this can be exploited for a new Fourier based proof of the lower scaling bound. Moreover, building on Rüland and Tribuzio (Arch. Ration. Mech. Anal. 243(1):401–431, 2022); Garroni and Nesi (Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 460(2046):1789–1806, 2004, https://doi.org/10.1098/rspa.2003.1249 [Titel anhand dieser DOI in Citavi-Projekt übernehmen] ); Palombaro and Ponsiglione (Asymptot. Anal. 40(1):37–49, 2004), we discuss the scaling behavior of a T3 structure for the divergence operator. We prove that as in Rüland and Tribuzio (Arch. Ration. Mech. Anal. 243(1):401–431, 2022) this yields a non-algebraic scaling law. |
DOI: | doi:10.1007/s10440-023-00557-7 |
URL: | kostenfrei: Volltext: https://doi.org/10.1007/s10440-023-00557-7 |
| DOI: https://doi.org/10.1007/s10440-023-00557-7 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | 35F05 |
| 35Q74 |
| 74G99 |
| 74N05 |
| AA-Free inclusions |
| Divergence T3T3 |
| Phase transformation |
| Two-well problem |
K10plus-PPN: | 1843406799 |
Verknüpfungen: | → Zeitschrift |
|
|
| |
Lokale URL UB: | Zum Volltext |
On scaling properties for two-state problems and for a aingularly perturbed T3 structure / Raiƫă, Bogdan [VerfasserIn]; 17 March 2023 (Online-Ressource)
69068341