Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Rüland, Angkana [VerfasserIn]   i
 Tribuzio, Antonio [VerfasserIn]   i
Titel:On the energy scaling behaviour of a singularly perturbed Tartar square
Verf.angabe:Angkana Rüland & Antonio Tribuzio
Jahr:2022
Umfang:31 S.
Fussnoten:Online veröffentlicht:10. Dezember 2021 ; Gesehen am 24.04.2023
Titel Quelle:Enthalten in: Archive for rational mechanics and analysis
Ort Quelle:Berlin : Springer, 1957
Jahr Quelle:2022
Band/Heft Quelle:243(2022), 1, Seite 401-431
ISSN Quelle:1432-0673
Abstract:In this article we derive an (almost) optimal scaling law for a singular perturbation problem associated with the Tartar square. As in Winter (Eur J Appl Math 8(2):185-207, 1997), Chipot (Numer Math 83(3):325-352, 1999), our upper bound quantifies the well-known construction which is used in the literature to prove the flexibility of the Tartar square in the sense of the flexibility of approximate solutions to the differential inclusion. The main novelty of our article is the derivation of an (up to logarithmic powers matching) ansatz free lower bound which relies on a bootstrap argument in Fourier space and is related to a quantification of the interaction of a nonlinearity and a negative Sobolev space in the form of “a chain rule in a negative Sobolev space”. Both the lower and the upper bound arguments give evidence of the involved “infinite order of lamination”.
DOI:doi:10.1007/s00205-021-01729-1
URL:kostenfrei: Volltext: https://doi.org/10.1007/s00205-021-01729-1
 kostenfrei: Volltext: https://link.springer.com/10.1007/s00205-021-01729-1
 DOI: https://doi.org/10.1007/s00205-021-01729-1
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1843460602
Verknüpfungen:→ Zeitschrift
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69068511   QR-Code
zum Seitenanfang