Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Schneider, Lucas [VerfasserIn]   i
 Wies, Christoph [VerfasserIn]   i
 Krieghoff-Henning, Eva [VerfasserIn]   i
 Bucher, Tabea-Clara [VerfasserIn]   i
 Utikal, Jochen [VerfasserIn]   i
 Schadendorf, Dirk [VerfasserIn]   i
 Brinker, Titus Josef [VerfasserIn]   i
Titel:Multimodal integration of image, epigenetic and clinical data to predict BRAF mutation status in melanoma
Verf.angabe:Lucas Schneider, Christoph Wies, Eva I. Krieghoff-Henning, Tabea-Clara Bucher, Jochen S. Utikal, Dirk Schadendorf, Titus J. Brinker
E-Jahr:2023
Jahr:April 2023
Umfang:8 S.
Fussnoten:Gesehen am 25.04.2023
Titel Quelle:Enthalten in: European journal of cancer
Ort Quelle:Amsterdam [u.a.] : Elsevier, 1992
Jahr Quelle:2023
Band/Heft Quelle:183(2023), Seite 131-138
ISSN Quelle:1879-0852
Abstract:Background - In machine learning, multimodal classifiers can provide more generalised performance than unimodal classifiers. In clinical practice, physicians usually also rely on a range of information from different examinations for diagnosis. In this study, we used BRAF mutation status prediction in melanoma as a model system to analyse the contribution of different data types in a combined classifier because BRAF status can be determined accurately by sequencing as the current gold standard, thus nearly eliminating label noise. - Methods - We trained a deep learning-based classifier by combining individually trained random forests of image, clinical and methylation data to predict BRAF-V600 mutation status in primary and metastatic melanomas of The Cancer Genome Atlas cohort. - Results - With our multimodal approach, we achieved an area under the receiver operating characteristic curve of 0.80, whereas the individual classifiers yielded areas under the receiver operating characteristic curve of 0.63 (histopathologic image data), 0.66 (clinical data) and 0.66 (methylation data) on an independent data set. - Conclusions - Our combined approach can predict BRAF status to some extent by identifying BRAF-V600 specific patterns at the histologic, clinical and epigenetic levels. The multimodal classifiers have improved generalisability in predicting BRAF mutation status.
DOI:doi:10.1016/j.ejca.2023.01.021
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1016/j.ejca.2023.01.021
 Volltext: https://www.sciencedirect.com/science/article/pii/S095980492300045X
 DOI: https://doi.org/10.1016/j.ejca.2023.01.021
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:BRAF-V600 mutation
 Deep learning
 Melanoma
 Multimodal classifier
 Mutation prediction
K10plus-PPN:1843477297
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69068750   QR-Code
zum Seitenanfang