Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Tricomi, Enrica [VerfasserIn]   i
 Mossini, Mirko [VerfasserIn]   i
 Missiroli, Francesco [VerfasserIn]   i
 Lotti, Nicola [VerfasserIn]   i
 Zhang, Xiaohui [VerfasserIn]   i
 Xiloyannis, Michele [VerfasserIn]   i
 Roveda, Loris [VerfasserIn]   i
 Masia, Lorenzo [VerfasserIn]   i
Titel:Environment-based assistance modulation for a hip exosuit via computer vision
Verf.angabe:Enrica Tricomi, Mirko Mossini, Francesco Missiroli, Nicola Lotti, Xiaohui Zhang, Michele Xiloyannis, Loris Roveda, Lorenzo Masia
E-Jahr:2023
Jahr:13 March 2023
Umfang:8 S.
Fussnoten:Gesehen am 22.05.2023
Titel Quelle:Enthalten in: IEEE Robotics and automation letters
Ort Quelle:New York, N.Y. : Institute of Electrical and Electronics Engineers, 2016
Jahr Quelle:2023
Band/Heft Quelle:8(2023), 5 vom: März, Seite 2550-2557
ISSN Quelle:2377-3766
Abstract:Just like in humans vision plays a fundamental role in guiding adaptive locomotion, when designing the control strategy for a walking assistive technology, the use of computer vision may substantially improve modulation of the assistance based on the external environment. In this letter, we developed a hip exosuit controller able to distinguish among three different walking terrains through the use of an RGB camera and to adapt the assistance accordingly. The system was tested with seven healthy participants walking throughout an overground path comprising of staircases and level ground. Subjects performed the task with the exosuit disabled (Exo Off), constant assistance profile (Vision Off), and with assistance modulation (Vision On). Our results showed that the controller was able to classify in real-time the path in front of the user with an overall accuracy per class above the 85%, and to perform assistance modulation accordingly. Evaluation related to the effects on the user showed that Vision On was able to outperform the other two conditions: we obtained significantly higher metabolic savings than Exo Off, with a peak of \approx -20% when climbing up the staircase and \approx -16% in the overall path, and than Vision Off when ascending or descending stairs. Such advancements in the field may yield to a step forward for the exploitation of lightweight walking assistive technologies in real-life scenarios.
DOI:doi:10.1109/LRA.2023.3256135
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://dx.doi.org/10.1109/LRA.2023.3256135
 DOI: https://doi.org/10.1109/LRA.2023.3256135
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:adaptive walking assistance
 assistive robotics
 Cameras
 computer vision
 Computer vision
 Exosuits
 Hip
 Legged locomotion
 Modulation
 Real-time systems
 Stairs
K10plus-PPN:184588552X
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69077807   QR-Code
zum Seitenanfang