| Online-Ressource |
Verfasst von: | Massi, Michela Carlotta [VerfasserIn]  |
| Franco, Nicola R. [VerfasserIn]  |
| Manzoni, Andrea [VerfasserIn]  |
| Paganoni, Anna Maria [VerfasserIn]  |
| Park, Hanla A. [VerfasserIn]  |
| Hoffmeister, Michael [VerfasserIn]  |
| Brenner, Hermann [VerfasserIn]  |
| Chang-Claude, Jenny [VerfasserIn]  |
| Ieva, Francesca [VerfasserIn]  |
| Zunino, Paolo [VerfasserIn]  |
Titel: | Learning high-order interactions for polygenic risk prediction |
Verf.angabe: | Michela C. Massi, Nicola R. Franco, Andrea Manzoni, Anna Maria Paganoni, Hanla A. Park, Michael Hoffmeister, Hermann Brenner, Jenny Chang-Claude, Francesca Ieva, Paolo Zunino |
E-Jahr: | 2023 |
Jahr: | February 10, 2023 |
Umfang: | 27 S. |
Fussnoten: | Gesehen am 22.05.2023 |
Titel Quelle: | Enthalten in: PLOS ONE |
Ort Quelle: | San Francisco, California, US : PLOS, 2006 |
Jahr Quelle: | 2023 |
Band/Heft Quelle: | 18(2023), 2 vom: Feb., Artikel-ID e0281618, Seite 1-27 |
ISSN Quelle: | 1932-6203 |
Abstract: | Within the framework of precision medicine, the stratification of individual genetic susceptibility based on inherited DNA variation has paramount relevance. However, one of the most relevant pitfalls of traditional Polygenic Risk Scores (PRS) approaches is their inability to model complex high-order non-linear SNP-SNP interactions and their effect on the phenotype (e.g. epistasis). Indeed, they incur in a computational challenge as the number of possible interactions grows exponentially with the number of SNPs considered, affecting the statistical reliability of the model parameters as well. In this work, we address this issue by proposing a novel PRS approach, called High-order Interactions-aware Polygenic Risk Score (hiPRS), that incorporates high-order interactions in modeling polygenic risk. The latter combines an interaction search routine based on frequent itemsets mining and a novel interaction selection algorithm based on Mutual Information, to construct a simple and interpretable weighted model of user-specified dimensionality that can predict a given binary phenotype. Compared to traditional PRSs methods, hiPRS does not rely on GWAS summary statistics nor any external information. Moreover, hiPRS differs from Machine Learning-based approaches that can include complex interactions in that it provides a readable and interpretable model and it is able to control overfitting, even on small samples. In the present work we demonstrate through a comprehensive simulation study the superior performance of hiPRS w.r.t. state of the art methods, both in terms of scoring performance and interpretability of the resulting model. We also test hiPRS against small sample size, class imbalance and the presence of noise, showcasing its robustness to extreme experimental settings. Finally, we apply hiPRS to a case study on real data from DACHS cohort, defining an interaction-aware scoring model to predict mortality of stage II-III Colon-Rectal Cancer patients treated with oxaliplatin. |
DOI: | doi:10.1371/journal.pone.0281618 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext: https://doi.org/10.1371/journal.pone.0281618 |
| Volltext: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0281618 |
| DOI: https://doi.org/10.1371/journal.pone.0281618 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | Algorithms |
| Atrial fibrillation |
| Cancer risk factors |
| Cancer treatment |
| Genome-wide association studies |
| Medical risk factors |
| Simulation and modeling |
| Single nucleotide polymorphisms |
K10plus-PPN: | 1845889614 |
Verknüpfungen: | → Zeitschrift |
Learning high-order interactions for polygenic risk prediction / Massi, Michela Carlotta [VerfasserIn]; February 10, 2023 (Online-Ressource)