Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---

+ Andere Auflagen/Ausgaben
heiBIB
 Online-Ressource
Verfasst von:Kommoss, Katharina [VerfasserIn]   i
 Winkler, Julia K. [VerfasserIn]   i
 Müller-Christmann, Christine [VerfasserIn]   i
 Niedermair, Felicitas [VerfasserIn]   i
 Toberer, Ferdinand [VerfasserIn]   i
 Stolz, Wilhelm [VerfasserIn]   i
 Kraenke, Teresa [VerfasserIn]   i
 Hofmann-Wellenhof, Rainer [VerfasserIn]   i
 Blum, Andreas [VerfasserIn]   i
 Enk, Alexander [VerfasserIn]   i
 Rosenberger, Albert [VerfasserIn]   i
 Hänßle, Holger [VerfasserIn]   i
Titel:Observational study investigating the level of support from a convolutional neural network in face and scalp lesions deemed diagnostically ‘unclear’ by dermatologists
Verf.angabe:Katharina S. Kommoss, Julia K. Winkler, Christine Mueller-Christmann, Felicitas Bardehle, Ferdinand Toberer, Wilhelm Stolz, Teresa Kraenke, Rainer Hofmann-Wellenhof, Andreas Blum, Alexander Enk, Albert Rosenberger, Holger A. Haenssle
E-Jahr:2023
Jahr:May 2023
Umfang:8 S.
Fussnoten:Gesehen am 26.05.2023
Titel Quelle:Enthalten in: European journal of cancer
Ort Quelle:Amsterdam [u.a.] : Elsevier, 1992
Jahr Quelle:2023
Band/Heft Quelle:185(2023) vom: Mai, Seite 53-60
ISSN Quelle:1879-0852
Abstract:Background - The clinical diagnosis of face and scalp lesions (FSL) is challenging due to overlapping features. Dermatologists encountering diagnostically ‘unclear’ lesions may benefit from artificial intelligence support via convolutional neural networks (CNN). - Methods - In a web-based classification task, dermatologists (n = 64) diagnosed a convenience sample of 100 FSL as ‘benign’, ‘malignant’, or ‘unclear’ and indicated their management decisions (‘no action’, ‘follow-up’, ‘treatment/excision’). A market-approved CNN (Moleanalyzer-Pro®, FotoFinder Systems, Germany) was applied for binary classifications (benign/malignant) of dermoscopic images. - Results - After reviewing one dermoscopic image per case, dermatologists labelled 562 of 6400 diagnoses (8.8%) as ‘unclear’ and mostly managed these by follow-up examinations (57.3%, n = 322) or excisions (42.5%, n = 239). Management was incorrect in 58.8% of 291 truly malignant cases (171 ‘follow-up’ or ‘no action’) and 43.9% of 271 truly benign cases (119 ‘excision’). Accepting CNN classifications in unclear cases would have reduced false management decisions to 4.1% in truly malignant and 31.7% in truly benign lesions (both p < 0.01). After receiving full case information 239 diagnoses (3.7%) remained ‘unclear’ to dermatologists, now triggering more excisions (72.0%) than follow-up examinations (28.0%). These management decisions were incorrect in 32.8% of 116 truly malignant cases and 76.4% of 123 truly benign cases. Accepting CNN classifications would have reduced false management decisions to 6.9% in truly malignant lesions and to 38.2% in truly benign cases (both p < 0.01). - Conclusions - Dermatologists mostly managed diagnostically ‘unclear’ FSL by treatment/excision or follow-up examination. Following CNN classifications as guidance in unclear cases seems suitable to significantly reduce incorrect decisions.
DOI:doi:10.1016/j.ejca.2023.02.025
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1016/j.ejca.2023.02.025
 Volltext: https://www.sciencedirect.com/science/article/pii/S0959804923001181
 DOI: https://doi.org/10.1016/j.ejca.2023.02.025
Datenträger:Online-Ressource
Sprache:eng
Bibliogr. Hinweis:Ergänzung: Kommoss, Katharina: Response to letter
Sach-SW:Actinic keratosis
 Basal cell carcinoma
 Deep learning
 Dermoscopy
 Lentigo maligna
 Melanoma
 Neural network
 Seborrhoeic keratosis
 Skin cancer
 Solar lentigo
K10plus-PPN:1846277469
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69079885   QR-Code
zum Seitenanfang