Status: Bibliographieeintrag
Standort: ---
Exemplare:
---
| Online-Ressource |
Verfasst von: | Ambos-Spies, Klaus [VerfasserIn]  |
| Terwijn, Sebastiaan A. [VerfasserIn]  |
| Zheng, Xizhong [VerfasserIn]  |
Titel: | Resource bounded randomness and weakly complete problems |
Verf.angabe: | Klaus Ambos-Spies, Sebastiaan A. Terwijn, Zheng Xizhong |
Jahr: | 1994 |
Umfang: | 9 S. |
Fussnoten: | Elektronische Reproduktion der Druck-Ausgabe 1. Januar 2005 ; Gesehen am 31.05.2023 |
Titel Quelle: | Enthalten in: Du, Dingzhu, 1948 - Algorithms and computation |
Ort Quelle: | Berlin, Heidelberg : Springer Berlin Heidelberg, 1994 |
Jahr Quelle: | 1994 |
Band/Heft Quelle: | (1994), Seite 369-377 |
ISBN Quelle: | 978-3-540-48653-4 |
Abstract: | We introduce and study resource bounded random sets based on Lutz's concept of resource bounded measure ([5, 6]). We concentrate on nc-randomness (c ≥ 2) which corresponds to the polynomial time bounded (p-) measure of Lutz, and which is adequate for studying the internal and quantative structure of E = DTIME(2lin). First we show that the class of nc-random sets has p-measure 1. This provides a new, simplified approach to p-measure 1-results. Next we compare randomness with genericity (in the sense of [1, 2]) and we show that nc+1-random sets are nc-generic, whereas the converse fails. From the former we conclude thatnc-random sets are not p-btt-complete for E. Our technical main results describe the distribution of the nc-random sets under p-m-reducibility. We show that every nc-random set in E has nk-random predecessors in E for any k ≥ 1, whereas the amount of randomness of the successors is bounded. We apply this result to answer a question raised by Lutz [8]: We show that the class of weakly complete sets has measure 1 in E and that there are weakly complete problems which are not p-btt-complete for E. |
DOI: | doi:10.1007/3-540-58325-4_201 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Verlag: https://dx.doi.org/10.1007/3-540-58325-4_201 |
| DOI: https://doi.org/10.1007/3-540-58325-4_201 |
Datenträger: | Online-Ressource |
Sprache: | eng |
K10plus-PPN: | 1847037771 |
Verknüpfungen: | → Sammelwerk |
Resource bounded randomness and weakly complete problems / Ambos-Spies, Klaus [VerfasserIn]; 1994 (Online-Ressource)
69081010