Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Zakieva, Alexandra [VerfasserIn]   i
 Cerrone, Lorenzo [VerfasserIn]   i
 Greb, Thomas [VerfasserIn]   i
Titel:Deep machine learning for cell segmentation and quantitative analysis of radial plant growth
Verf.angabe:Alexandra Zakieva, Lorenzo Cerrone, Thomas Greb
E-Jahr:2023
Jahr:28 April 2023
Umfang:10 S.
Fussnoten:Online verfügbar 18. April 2023, Artikelversion 28. April 2023 ; Gesehen am 16.06.2023
Titel Quelle:Enthalten in: Cells & development
Ort Quelle:Amsterdam : Elsevier, 2021
Jahr Quelle:2023
Band/Heft Quelle:174(2023) vom: Apr., Artikel-ID 203842, Seite 1-10
ISSN Quelle:2667-2901
Abstract:Plants produce the major part of terrestrial biomass and are long-term deposits of atmospheric carbon. This capacity is to a large extent due to radial growth of woody species - a process driven by cambium stem cells located in distinct niches of shoot and root axes. In the model species Arabidopsis thaliana, thousands of cells are produced by the cambium in radial orientation generating a complex organ anatomy enabling long-distance transport, mechanical support and protection against biotic and abiotic stressors. These complex organ dynamics make a comprehensive and unbiased analysis of radial growth challenging and asks for tools for automated quantification. Here, we combined the recently developed PlantSeg and MorphographX image analysis tools, to characterize tissue morphogenesis of the Arabidopsis hypocotyl. After sequential training of segmentation models on ovules, shoot apical meristems and adult hypocotyls using deep machine learning, followed by the training of cell type classification models, our pipeline segments complex images of transverse hypocotyl sections with high accuracy and classifies central hypocotyl cell types. By applying our pipeline on both wild type and phloem intercalated with xylem (pxy) mutants, we also show that this strategy faithfully detects major anatomical aberrations. Collectively, we conclude that our established pipeline is a powerful phenotyping tool comprehensively extracting cellular parameters and providing access to tissue topology during radial plant growth.
DOI:doi:10.1016/j.cdev.2023.203842
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1016/j.cdev.2023.203842
 Volltext: https://www.sciencedirect.com/science/article/pii/S2667290123000189
 DOI: https://doi.org/10.1016/j.cdev.2023.203842
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Arabidopsis hypocotyl
 Automated image analysis
 Cambium
 PlantSeg
 Quantitative histology
 Radial plant growth
 Wood formation
K10plus-PPN:1850444412
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69086268   QR-Code
zum Seitenanfang