Status: Bibliographieeintrag
| Online-Ressource |
Verfasst von: | Rosenblau, Gabriela [VerfasserIn]  |
| Frolichs, Koen [VerfasserIn]  |
| Korn, Christoph W. [VerfasserIn]  |
Titel: | A neuro-computational social learning framework to facilitate transdiagnostic classification and treatment across psychiatric disorders |
Verf.angabe: | Gabriela Rosenblau, Koen Frolichs, Christoph W. Korn |
E-Jahr: | 2023 |
Jahr: | 22 April 2023 |
Umfang: | 20 S. |
Fussnoten: | Online verfügbar 14. April 2023, Artikelversion 22. April 2023 ; Gesehen am 20.06.2023 |
Titel Quelle: | Enthalten in: Neuroscience & biobehavioral reviews |
Ort Quelle: | Amsterdam [u.a.] : Elsevier Science, 1978 |
Jahr Quelle: | 2023 |
Band/Heft Quelle: | 149(2023) vom: Apr., Artikel-ID 105181, Seite 1-20 |
ISSN Quelle: | 1873-7528 |
Abstract: | Social deficits are among the core and most striking psychiatric symptoms, present in most psychiatric disorders. Here, we introduce a novel social learning framework, which consists of neuro-computational models that combine reinforcement learning with various types of social knowledge structures. We outline how this social learning framework can help specify and quantify social psychopathology across disorders and provide an overview of the brain regions that may be involved in this type of social learning. We highlight how this framework can specify commonalities and differences in the social psychopathology of individuals with autism spectrum disorder (ASD), personality disorders (PD), and major depressive disorder (MDD) and improve treatments on an individual basis. We conjecture that individuals with psychiatric disorders rely on rigid social knowledge representations when learning about others, albeit the nature of their rigidity and the behavioral consequences can greatly differ. While non-clinical cohorts tend to efficiently adapt social knowledge representations to relevant environmental constraints, psychiatric cohorts may rigidly stick to their preconceived notions or overly coarse knowledge representations during learning. |
DOI: | doi:10.1016/j.neubiorev.2023.105181 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext: https://doi.org/10.1016/j.neubiorev.2023.105181 |
| Volltext: https://www.sciencedirect.com/science/article/pii/S0149763423001501 |
| DOI: https://doi.org/10.1016/j.neubiorev.2023.105181 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | Autism spectrum disorder |
| Major depressive disorder |
| Mental health |
| Neuro-computational modelling |
| Personality disorders |
| Reinforcement learning |
| Social learning |
| Transdiagnostic |
K10plus-PPN: | 1850600678 |
Verknüpfungen: | → Zeitschrift |
¬A¬ neuro-computational social learning framework to facilitate transdiagnostic classification and treatment across psychiatric disorders / Rosenblau, Gabriela [VerfasserIn]; 22 April 2023 (Online-Ressource)
69087582