Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Baghi, Quentin [VerfasserIn]   i
 Karnesis, Nikolaos [VerfasserIn]   i
 Bayle, Jean-Baptiste [VerfasserIn]   i
 Besançon, Marc [VerfasserIn]   i
 Inchauspé, Henri [VerfasserIn]   i
Titel:Uncovering gravitational-wave backgrounds from noises of unknown shape with LISA
Verf.angabe:Quentin Baghi, Nikolaos Karnesis, Jean-Baptiste Bayle, Marc Besançon and Henri Inchauspé
E-Jahr:2023
Jahr:26 April 2023
Umfang:28 S.
Fussnoten:Gesehen am 20.06.2023
Titel Quelle:Enthalten in: Journal of cosmology and astroparticle physics
Ort Quelle:London : IOP, 2003
Jahr Quelle:2023
Band/Heft Quelle:(2023), 4 vom: Apr., Artikel-ID 066, Seite 1-28
ISSN Quelle:1475-7516
Abstract:Detecting stochastic background radiation of cosmological origin is an exciting possibility for current and future gravitational-wave (GW) detectors. However, distinguishing it from other stochastic processes, such as instrumental noise and astrophysical backgrounds, is challenging. It is even more delicate for the space-based GW observatory LISA since it cannot correlate its observations with other detectors, unlike today's terrestrial network. Nonetheless, with multiple measurements across the constellation and high accuracy in the noise level, detection is still possible. In the context of GW background detection, previous studies have assumed that instrumental noise has a known, possibly parameterized, spectral shape. To make our analysis robust against imperfect knowledge of the instrumental noise, we challenge this crucial assumption and assume that the single-link interferometric noises have an arbitrary and unknown spectrum. We investigate possible ways of separating instrumental and GW contributions by using realistic LISA data simulations with time-varying arms and second-generation time-delay interferometry. By fitting a generic spline model to the interferometer noise and a power-law template to the signal, we can detect GW stochastic backgrounds up to energy density levels comparable with fixed-shape models. We also demonstrate that we can probe a region of the GW background parameter space that today's detectors cannot access.
DOI:doi:10.1088/1475-7516/2023/04/066
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1088/1475-7516/2023/04/066
 kostenfrei: Volltext: https://dx.doi.org/10.1088/1475-7516/2023/04/066
 DOI: https://doi.org/10.1088/1475-7516/2023/04/066
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1850603170
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69087591   QR-Code
zum Seitenanfang