Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Roß, Tobias [VerfasserIn]   i
 Bruno, Pierangela [VerfasserIn]   i
 Reinke, Annika [VerfasserIn]   i
 Wiesenfarth, Manuel [VerfasserIn]   i
 Köppel, Lisa [VerfasserIn]   i
 Full, Peter M. [VerfasserIn]   i
 Pekdemir, Bünyamin [VerfasserIn]   i
 Godau, Patrick [VerfasserIn]   i
 Trofimova, Darya [VerfasserIn]   i
 Isensee, Fabian [VerfasserIn]   i
 Adler, Tim [VerfasserIn]   i
 Tran, Thuy [VerfasserIn]   i
 Moccia, Sara [VerfasserIn]   i
 Calimeri, Francesco [VerfasserIn]   i
 Müller, Beat P. [VerfasserIn]   i
 Kopp-Schneider, Annette [VerfasserIn]   i
 Maier-Hein, Lena [VerfasserIn]   i
Titel:Beyond rankings
Titelzusatz:learning (more) from algorithm validation
Verf.angabe:Tobias Roß, Pierangela Bruno, Annika Reinke, Manuel Wiesenfarth, Lisa Koeppel, Peter M. Full, Bünyamin Pekdemir, Patrick Godau, Darya Trofimova, Fabian Isensee, Tim J. Adler, Thuy N. Tran, Sara Moccia, Francesco Calimeri, Beat P. Müller-Stich, Annette Kopp-Schneider, Lena Maier-Hein
E-Jahr:2023
Jahr:23 March 2023
Umfang:12 S.
Fussnoten:Online verfügbar 1. März 2023, Artikelversion 23. März 2023 ; Gesehen am 21.06.2023
Titel Quelle:Enthalten in: Medical image analysis
Ort Quelle:Amsterdam [u.a.] : Elsevier Science, 1996
Jahr Quelle:2023
Band/Heft Quelle:86(2023) vom: März, Artikel-ID 102765, Seite 1-12
ISSN Quelle:1361-8423
Abstract:Challenges have become the state-of-the-art approach to benchmark image analysis algorithms in a comparative manner. While the validation on identical data sets was a great step forward, results analysis is often restricted to pure ranking tables, leaving relevant questions unanswered. Specifically, little effort has been put into the systematic investigation on what characterizes images in which state-of-the-art algorithms fail. To address this gap in the literature, we (1) present a statistical framework for learning from challenges and (2) instantiate it for the specific task of instrument instance segmentation in laparoscopic videos. Our framework relies on the semantic meta data annotation of images, which serves as foundation for a General Linear Mixed Models (GLMM) analysis. Based on 51,542 meta data annotations performed on 2,728 images, we applied our approach to the results of the Robust Medical Instrument Segmentation Challenge (ROBUST-MIS) challenge 2019 and revealed underexposure, motion and occlusion of instruments as well as the presence of smoke or other objects in the background as major sources of algorithm failure. Our subsequent method development, tailored to the specific remaining issues, yielded a deep learning model with state-of-the-art overall performance and specific strengths in the processing of images in which previous methods tended to fail. Due to the objectivity and generic applicability of our approach, it could become a valuable tool for validation in the field of medical image analysis and beyond.
DOI:doi:10.1016/j.media.2023.102765
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1016/j.media.2023.102765
 Volltext: https://www.sciencedirect.com/science/article/pii/S1361841523000269
 DOI: https://doi.org/10.1016/j.media.2023.102765
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Artificial intelligence
 Biomedical image analysis challenges
 Deep learning
 Endoscopic vision
 Generalized linear mixed models
 Grand challenges
 Image characteristics driven algorithm development
 Instrument segmentation
 Minimally invasive surgery
 Surgical data science
K10plus-PPN:1850719098
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69088187   QR-Code
zum Seitenanfang