Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Lau, Tommy Chi Ho [VerfasserIn]   i
 Drążkowska, Joanna [VerfasserIn]   i
 Stammler, Sebastian Markus [VerfasserIn]   i
 Birnstiel, Tilman [VerfasserIn]   i
 Dullemond, Cornelis [VerfasserIn]   i
Titel:Rapid formation of massive planetary cores in a pressure bump
Verf.angabe:Tommy Chi Ho Lau, Joanna Drążkowska, Sebastian M. Stammler, Tilman Birnstiel, and Cornelis P. Dullemond
E-Jahr:2022
Jahr:21 December 2022
Umfang:15 S.
Fussnoten:Published online 21 December 2022 ; Gesehen am 29.06.2023
Titel Quelle:Enthalten in: Astronomy and astrophysics
Ort Quelle:Les Ulis : EDP Sciences, 1969
Jahr Quelle:2022
Band/Heft Quelle:668(2022), Artikel-ID A170, Seite 1-15
ISSN Quelle:1432-0746
Abstract:Context: Models of planetary core growth by either planetesimal or pebble accretion are traditionally disconnected from the models of dust evolution and formation of the first gravitationally bound planetesimals. State-of-the-art models typically start with massive planetary cores already present. Aims:We aim to study the formation and growth of planetary cores in a pressure bump, motivated by the annular structures observed in protoplanetary disks, starting with submicron-sized dust grains.Methods: We connect the models of dust coagulation and drift, planetesimal formation in the streaming instability, gravitational interactions between planetesimals, pebble accretion, and planet migration into one uniform framework. Results: We find that planetesimals forming early at the massive end of the size distribution grow quickly, predominantly by pebble accretion. These few massive bodies grow on timescales of ~100 000 yr and stir the planetesimals that form later, preventing the emergence of further planetary cores. Additionally, a migration trap occurs, allowing for retention of the growing cores.Conclusions: Pressure bumps are favourable locations for the emergence and rapid growth of planetary cores by pebble accretion as the dust density and grain size are increased and the pebble accretion onset mass is reduced compared to a smooth-disc model.
DOI:doi:10.1051/0004-6361/202244864
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1051/0004-6361/202244864
 Volltext: https://www.aanda.org/articles/aa/abs/2022/12/aa44864-22/aa44864-22.html
 DOI: https://doi.org/10.1051/0004-6361/202244864
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1851288228
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69091353   QR-Code
zum Seitenanfang