Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Xie, Hui [VerfasserIn]   i
 Pan, Zhe [VerfasserIn]   i
 Zhou, Leixin [VerfasserIn]   i
 Zaman, Fahim A. [VerfasserIn]   i
 Chen, Danny Z. [VerfasserIn]   i
 Jonas, Jost B. [VerfasserIn]   i
 Xu, Weiyu [VerfasserIn]   i
 Wang, Ya Xing [VerfasserIn]   i
 Wu, Xiaodong [VerfasserIn]   i
Titel:Globally optimal OCT surface segmentation using a constrained IPM optimization
Verf.angabe:Hui Xie, Zhe Pan, Leixin Zhou, Fahim A. Zaman, Danny Z. Chen, Jost B. Jonas, Weiyu Xu, Ya Xing Wang and Xiaodong Wu
E-Jahr:2022
Jahr:11 Jan 2022
Umfang:19 S.
Fussnoten:Gesehen am 13.07.2022
Titel Quelle:Enthalten in: Optics express
Ort Quelle:Washington, DC : Optica, 1997
Jahr Quelle:2022
Band/Heft Quelle:30(2022), 2, Seite 2453-2471
ISSN Quelle:1094-4087
Abstract:Segmentation of multiple surfaces in optical coherence tomography (OCT) images is a challenging problem, further complicated by the frequent presence of weak boundaries, varying layer thicknesses, and mutual influence between adjacent surfaces. The traditional graph-based optimal surface segmentation method has proven its effectiveness with its ability to capture various surface priors in a uniform graph model. However, its efficacy heavily relies on handcrafted features that are used to define the surface cost for the “goodness” of a surface. Recently, deep learning (DL) is emerging as a powerful tool for medical image segmentation thanks to its superior feature learning capability. Unfortunately, due to the scarcity of training data in medical imaging, it is nontrivial for DL networks to implicitly learn the global structure of the target surfaces, including surface interactions. This study proposes to parameterize the surface cost functions in the graph model and leverage DL to learn those parameters. The multiple optimal surfaces are then simultaneously detected by minimizing the total surface cost while explicitly enforcing the mutual surface interaction constraints. The optimization problem is solved by the primal-dual interior-point method (IPM), which can be implemented by a layer of neural networks, enabling efficient end-to-end training of the whole network. Experiments on spectral-domain optical coherence tomography (SD-OCT) retinal layer segmentation demonstrated promising segmentation results with sub-pixel accuracy.
DOI:doi:10.1364/OE.444369
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1364/OE.444369
 kostenfrei: Volltext: https://opg.optica.org/oe/abstract.cfm?uri=oe-30-2-2453
 DOI: https://doi.org/10.1364/OE.444369
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Medical image processing
 Medical imaging
 Neural networks
 Optical surfaces
 Retinal nerve fiber layer
 Spectral domain optical coherence tomography
K10plus-PPN:185263538X
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69096576   QR-Code
zum Seitenanfang