Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---

+ Andere Auflagen/Ausgaben
heiBIB
 Online-Ressource
Verfasst von:Kriegsmann, Mark [VerfasserIn]   i
 Kriegsmann, Katharina [VerfasserIn]   i
 Steinbuß, Georg [VerfasserIn]   i
 Zgorzelski, Christiane [VerfasserIn]   i
 Albrecht, Thomas [VerfasserIn]   i
 Heinrich, Stefan [VerfasserIn]   i
 Farkas, Stefan [VerfasserIn]   i
 Roth, Wilfried [VerfasserIn]   i
 Dang, Hien [VerfasserIn]   i
 Hausen, Anne [VerfasserIn]   i
 Gaida, Matthias [VerfasserIn]   i
Titel:Implementation of deep learning in liver pathology optimizes diagnosis of benign lesions and adenocarcinoma metastasis
Verf.angabe:Mark Kriegsmann, Katharina Kriegsmann, Georg Steinbuss, Christiane Zgorzelski, Thomas Albrecht, Stefan Heinrich, Stefan Farkas, Wilfried Roth, Hien Dang, Anne Hausen, Matthias M. Gaida
E-Jahr:2023
Jahr:July 2023
Umfang:14 S.
Illustrationen:Illustrationen
Fussnoten:Online veröffentlicht: 6. July 2023 ; Gesehen am 20.07.2023
Titel Quelle:Enthalten in: Clinical and translational medicine
Ort Quelle:Hoboken, NJ : Wiley, 2012
Jahr Quelle:2023
Band/Heft Quelle:13(2023), 7 vom: Juli, Artikel-ID e1299, Seite 1-14
ISSN Quelle:2001-1326
Abstract:Introduction Differentiation of histologically similar structures in the liver, including anatomical structures, benign bile duct lesions, or common types of liver metastases, can be challenging with conventional histological tissue sections alone. Accurate histopathological classification is paramount for the diagnosis and adequate treatment of the disease. Deep learning algorithms have been proposed for objective and consistent assessment of digital histopathological images. Materials and methods In the present study, we trained and evaluated deep learning algorithms based on the EfficientNetV2 and ResNetRS architectures to discriminate between different histopathological classes. For the required dataset, specialized surgical pathologists annotated seven different histological classes, including different non-neoplastic anatomical structures, benign bile duct lesions, and liver metastases from colorectal and pancreatic adenocarcinoma in a large patient cohort. Annotation resulted in a total of 204.159 image patches, followed by discrimination analysis using our deep learning models. Model performance was evaluated on validation and test data using confusion matrices. Results Evaluation of the test set based on tiles and cases revealed overall highly satisfactory prediction capability of our algorithm for the different histological classes, resulting in a tile accuracy of 89% (38 413/43 059) and case accuracy of 94% (198/211). Importantly, the separation of metastasis versus benign lesions was certainly confident on case level, confirming the classification model performed with high diagnostic accuracy. Moreover, the whole curated raw data set is made publically available. Conclusions Deep learning is a promising approach in surgical liver pathology supporting decision making in personalized medicine.
DOI:doi:10.1002/ctm2.1299
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1002/ctm2.1299
 kostenfrei: Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/ctm2.1299
 DOI: https://doi.org/10.1002/ctm2.1299
Datenträger:Online-Ressource
Sprache:eng
Bibliogr. Hinweis:Forschungsdaten: Kriegsmann, Mark, 1987 - : Implementation of deep learning in liver pathology optimizes diagnosis of benign lesions and adenocarcinoma metastasis [data]
Sach-SW:artificial intelligence
 deep learning
 liver metastasis
 liver pathology
 personalized medicine
K10plus-PPN:1853176737
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69099822   QR-Code
zum Seitenanfang