Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---

+ Andere Auflagen/Ausgaben
heiBIB
 Online-Ressource
Verfasst von:Zahs, Vivien [VerfasserIn]   i
 Anders, Katharina [VerfasserIn]   i
 Kohns, Julia [VerfasserIn]   i
 Stark, Alexander [VerfasserIn]   i
 Höfle, Bernhard [VerfasserIn]   i
Titel:Classification of structural building damage grades from multi-temporal photogrammetric point clouds using a machine learning model trained on virtual laser scanning data
Verf.angabe:Vivien Zahs, Katharina Anders, Julia Kohns, Alexander Stark, Bernhard Höfle
E-Jahr:2023
Jahr:August 2023
Umfang:15 S.
Illustrationen:Illustrationen
Fussnoten:Online verfügbar: 15. Juli 2023, Artikelversion: 15. Juli 2023 ; Gesehen am 20.07.2023
Titel Quelle:Enthalten in: International journal of applied earth observation and geoinformation
Ort Quelle:Amsterdam [u.a.] : Elsevier Science, 1999
Jahr Quelle:2023
Band/Heft Quelle:122(2023) vom: Aug., Artikel-ID 103406, Seite 1-15
ISSN Quelle:1872-826X
Abstract:Automatic damage assessment by analysing UAV-derived 3D point clouds provides fast information on the damage situation after an earthquake. However, the assessment of different damage grades is challenging given the variety in damage characteristics and limited transferability of methods to other geographic regions or data sources. We present a novel change-based approach to automatically assess multi-class building damage from real-world point clouds using a machine learning model trained on virtual laser scanning (VLS) data. Therein, we (1) identify object-specific point cloud-based change features, (2) extract changed building parts using k-means clustering, (3) train a random forest machine learning model with VLS data based on object-specific change features, and (4) use the classifier to assess building damage in real-world photogrammetric point clouds. We evaluate the classifier with respect to its capacity to classify three damage grades (heavy, extreme, destruction) in pre-event and post-event point clouds of an earthquake in L’Aquila (Italy). Using object-specific change features derived from bi-temporal point clouds, our approach is transferable with respect to multi-source input point clouds used for model training (VLS) and application (real-world photogrammetry). We further achieve geographic transferability by using simulated training data which characterises damage grades across different geographic regions. The model yields high multi-target classification accuracies (overall accuracy: 92.0%-95.1%). Classification performance improves only slightly when using real-world region-specific training data (< 3% higher overall accuracies). We consider our approach especially relevant for applications where timely information on the damage situation is required and sufficient real-world training data is not available.
DOI:doi:10.1016/j.jag.2023.103406
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1016/j.jag.2023.103406
 Volltext: https://www.sciencedirect.com/science/article/pii/S1569843223002303
 DOI: https://doi.org/10.1016/j.jag.2023.103406
Datenträger:Online-Ressource
Sprache:eng
Bibliogr. Hinweis:Forschungsdaten: Zahs, Vivien: Classification of structural building damage grades from multi-temporal photogrammetric point clouds using a machine learning model trained on virtual laser scanning data [Data and Source Code]
Sach-SW:3D
 Change detection
 Damage classification
 Earthquake
 Natural hazards
 UAV
K10plus-PPN:1853179108
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69099831   QR-Code
zum Seitenanfang