Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Llenga, Stiv [VerfasserIn]   i
 Gryn’ova, Ganna [VerfasserIn]   i
Titel:Matrix of orthogonalized atomic orbital coefficients representation for radicals and ions
Verf.angabe:Stiv Llenga and Ganna Gryn’ova
Jahr:2023
Umfang:14 S.
Illustrationen:Illustrationen
Fussnoten:Online veröffentlicht: 2. Juni 2023 ; Gesehen am 21.07.2023
Titel Quelle:Enthalten in: The journal of chemical physics
Ort Quelle:Melville, NY : American Institute of Physics, 1933
Jahr Quelle:2023
Band/Heft Quelle:158(2023), 21, Artikel-ID 214116, Seite 1-14
ISSN Quelle:1089-7690
Abstract:Chemical (molecular, quantum) machine learning relies on representing molecules in unique and informative ways. Here, we present the matrix of orthogonalized atomic orbital coefficients (MAOC) as a quantum-inspired molecular and atomic representation containing both structural (composition and geometry) and electronic (charge and spin multiplicity) information. MAOC is based on a cost-effective localization scheme that represents localized orbitals via a predefined set of atomic orbitals. The latter can be constructed from such small atom-centered basis sets as pcseg-0 and STO-3G in conjunction with guess (non-optimized) electronic configuration of the molecule. Importantly, MAOC is suitable for representing monatomic, molecular, and periodic systems and can distinguish compounds with identical compositions and geometries but distinct charges and spin multiplicities. Using principal component analysis, we constructed a more compact but equally powerful version of MAOC—PCX-MAOC. To test the performance of full and reduced MAOC and several other representations (CM, SOAP, SLATM, and SPAHM), we used a kernel ridge regression machine learning model to predict frontier molecular orbital energy levels and ground state single-point energies for chemically diverse neutral and charged, closed- and open-shell molecules from an extended QM7b dataset, as well as two new datasets, N-HPC-1 (N-heteropolycycles) and REDOX (nitroxyl and phenoxyl radicals, carbonyl, and cyano compounds). MAOC affords accuracy that is either similar or superior to other representations for a range of chemical properties and systems.
DOI:doi:10.1063/5.0151122
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1063/5.0151122
 DOI: https://doi.org/10.1063/5.0151122
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1853242454
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69100060   QR-Code
zum Seitenanfang