Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Frotscher, Ophelia [VerfasserIn]   i
 Martinek, Viktor [VerfasserIn]   i
 Fingerhut, Robin [VerfasserIn]   i
 Yang, Xiaoxian [VerfasserIn]   i
 Vrabec, Jadran [VerfasserIn]   i
 Herzog, Roland [VerfasserIn]   i
 Richter, Markus [VerfasserIn]   i
Titel:Proof of concept for fast equation of state development using an integrated experimental-computational approach
Verf.angabe:Ophelia Frotscher, Viktor Martinek, Robin Fingerhut, Xiaoxian Yang, Jadran Vrabec, Roland Herzog, Markus Richter
Jahr:2023
Umfang:20 S.
Fussnoten:Veröffentlicht: 23. Mai 2023 ; Gesehen am 21.07.2023
Titel Quelle:Enthalten in: International journal of thermophysics
Ort Quelle:New York, NY : Springer Science + Business Media B.V., 1980
Jahr Quelle:2023
Band/Heft Quelle:44(2023), 7, Artikel-ID 105, Seite 1-20
ISSN Quelle:1572-9567
Abstract:A multitude of industries, including energy and process engineering, as well as academia are researching and utilizing new fluid substances to further the aim of sustainability. Knowledge of the thermodynamic properties of these substances is a prerequisite, if they are to be utilized to their fullest potential. To date, the way to acquire reliable knowledge of the thermodynamic behavior is through measurements. The ensuing experimental data are then used to develop equations of state, which efficiently embody the gained knowledge of the behavior of the fluid substance, allow for interpolation and, to some extent, extrapolation. However, the acquisition of low-uncertainty experimental data, and thus the development of accurate equations of state, is often time-consuming and expensive. For substances for which suitable force field models exist, molecular modeling and simulation are well-suited to generate thermodynamic data or to augment experimental data, however, at the expense of larger uncertainties. The major goal of this work is to present a new approach for the development of equations of state using (1) symbolic regression, which is a machine learning based model development approach, (2) optimal experimental design, and (3) efficient data acquisition. We demonstrate this approach using the example of density data of an air-like binary mixture (0.2094 O2 + 0.7906 N2) over the temperature range from 100K to 300K at pressures of up to 8MPa, which covers the gaseous, liquid, and supercritical regions. For this purpose, an experimental data set published by von Preetzmann et al. (Int. J. Thermophys. 42, 2021) and molecular simulation data sampled in this work are used. The two data sets are compared in terms of acquisition time, cost, and uncertainty, showing that an optimized combination of experimental and simulation data leads to lower cost while maintaining low uncertainties.
DOI:doi:10.1007/s10765-023-03197-z
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1007/s10765-023-03197-z
 DOI: https://doi.org/10.1007/s10765-023-03197-z
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Equation of state
 Molecular dynamics simulation
 Optimal experimental design
 Symbolic regression
K10plus-PPN:1853253669
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69100091   QR-Code
zum Seitenanfang