Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Tharmaseelan, Hishan [VerfasserIn]   i
 Froelich, Matthias F. [VerfasserIn]   i
 Nörenberg, Dominik [VerfasserIn]   i
 Overhoff, Daniel [VerfasserIn]   i
 Rotkopf, Lukas Thomas [VerfasserIn]   i
 Riffel, Philipp [VerfasserIn]   i
 Schönberg, Stefan [VerfasserIn]   i
 Ayx, Isabelle [VerfasserIn]   i
Titel:Influence of local aortic calcification on periaortic adipose tissue radiomics texture features
Titelzusatz:a primary analysis on PCCT
Verf.angabe:Hishan Tharmaseelan, Matthias F. Froelich, Dominik Nörenberg, Daniel Overhoff, Lukas T. Rotkopf, Philipp Riffel, Stefan O. Schoenberg, Isabelle Ayx
E-Jahr:2022
Jahr:25 June 2022
Umfang:9 S.
Fussnoten:Gesehen am 25.07.2023
Titel Quelle:Enthalten in: The international journal of cardiovascular imaging
Ort Quelle:Dordrecht [u.a.] : Springer, 2001
Jahr Quelle:2022
Band/Heft Quelle:38(2022), 11 vom: Nov., Seite 2459-2467
ISSN Quelle:1875-8312
Abstract:Perivascular adipose tissue is known to be metabolically active. Volume and density of periaortic adipose tissue are associated with aortic calcification as well as aortic diameter indicating a possible influence of periaortic adipose tissue on the development of aortic calcification. Due to better spatial resolution and signal-to-noise ratio, new CT technologies such as photon-counting computed tomography may allow the detection of texture alterations of periaortic adipose tissue depending on the existence of local aortic calcification possibly outlining a biomarker for the development of arteriosclerosis. In this retrospective, single-center, IRB-approved study, periaortic adipose tissue was segmented semiautomatically and radiomics features were extracted using pyradiomics. Statistical analysis was performed in R statistics calculating mean and standard deviation with Pearson correlation coefficient for feature correlation. For feature selection Random Forest classification was performed. A two-tailed unpaired t test was applied to the final feature set. Results were visualized as boxplots and heatmaps. A total of 30 patients (66.6% female, median age 57 years) were enrolled in this study. Patients were divided into two subgroups depending on the presence of local aortic calcification. By Random Forest feature selection a set of seven higher-order features could be defined to discriminate periaortic adipose tissue texture between these two groups. The t test showed a statistic significant discrimination for all features (p < 0.05). Texture changes of periaortic adipose tissue associated with the existence of local aortic calcification may lay the foundation for finding a biomarker for development of arteriosclerosis.
DOI:doi:10.1007/s10554-022-02656-2
URL:kostenfrei: Volltext: https://doi.org/10.1007/s10554-022-02656-2
 kostenfrei: Volltext: https://link.springer.com/article/10.1007/s10554-022-02656-2
 DOI: https://doi.org/10.1007/s10554-022-02656-2
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Periaortic adipose tissue
 Photon-counting computed tomography
 Radiomics
 Texture analysis
K10plus-PPN:1853566306
Verknüpfungen:→ Zeitschrift
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69100957   QR-Code
zum Seitenanfang