Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Tharmaseelan, Hishan [VerfasserIn]   i
 Rotkopf, Lukas Thomas [VerfasserIn]   i
 Ayx, Isabelle [VerfasserIn]   i
 Hertel, Alexander [VerfasserIn]   i
 Nörenberg, Dominik [VerfasserIn]   i
 Schönberg, Stefan [VerfasserIn]   i
 Froelich, Matthias F. [VerfasserIn]   i
Titel:Evaluation of radiomics feature stability in abdominal monoenergetic photon counting CT reconstructions
Verf.angabe:Hishan Tharmaseelan, Lukas T. Rotkopf, Isabelle Ayx, Alexander Hertel, Dominik Nörenberg, Stefan O. Schoenberg and Matthias F. Froelich
E-Jahr:2022
Jahr:15 November 2022
Umfang:12 S.
Fussnoten:Gesehen am 25.07.2023
Titel Quelle:Enthalten in: Scientific reports
Ort Quelle:[London] : Springer Nature, 2011
Jahr Quelle:2022
Band/Heft Quelle:12(2022), Artikel-ID 19594, Seite 1-12
ISSN Quelle:2045-2322
Abstract:Feature stability and standardization remain challenges that impede the clinical implementation of radiomics. This study investigates the potential of spectral reconstructions from photon-counting computed tomography (PCCT) regarding organ-specific radiomics feature stability. Abdominal portal-venous phase PCCT scans of 10 patients in virtual monoenergetic (VM) (keV 40-120 in steps of 10), polyenergetic, virtual non-contrast (VNC), and iodine maps were acquired. Two 2D and 3D segmentations measuring 1 and 2 cm in diameter of the liver, lung, spleen, psoas muscle, subcutaneous fat, and air were obtained for spectral reconstructions. Radiomics features were extracted with pyradiomics. The calculation of feature-specific intraclass correlation coefficients (ICC) was performed by comparing all segmentation approaches and organs. Feature-wise and organ-wise correlations were evaluated. Segmentation-resegmentation stability was evaluated by concordance correlation coefficient (CCC). Compared to non-VM, VM-reconstruction features tended to be more stable. For VM reconstructions, 3D 2 cm segmentation showed the highest average ICC with 0.63. Based on a criterion of ≥ 3 stable organs and an ICC of ≥ 0.75, 12—mainly non-first-order features—are shown to be stable between the VM reconstructions. In a segmentation-resegmentation analysis in 3D 2 cm, three features were identified as stable based on a CCC of > 0.6 in ≥ 3 organs in ≥ 6 VM reconstructions. Certain radiomics features vary between monoenergetic reconstructions and depend on the ROI size. Feature stability was also shown to differ between different organs. Yet, glcm_JointEntropy, gldm_GrayLevelNonUniformity, and firstorder_Entropy could be identified as features that could be interpreted as energy-independent and segmentation-resegmentation stable in this PCCT collective. PCCT may support radiomics feature standardization and comparability between sites.
DOI:doi:10.1038/s41598-022-22877-8
URL:kostenfrei: Volltext: https://doi.org/10.1038/s41598-022-22877-8
 kostenfrei: Volltext: http://www.nature.com/articles/s41598-022-22877-8
 DOI: https://doi.org/10.1038/s41598-022-22877-8
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Computational models
 Data processing
 Image processing
 Medical imaging
 Software
K10plus-PPN:1853608041
Verknüpfungen:→ Zeitschrift
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69101035   QR-Code
zum Seitenanfang