Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Ullah, Tahira [VerfasserIn]   i
 Lautenbach, Sven [VerfasserIn]   i
 Herfort, Benjamin [VerfasserIn]   i
 Reinmuth, Marcel [VerfasserIn]   i
 Schorlemmer, Danijel [VerfasserIn]   i
Titel:Assessing completeness of OpenStreetMap building footprints using MapSwipe
Verf.angabe:Tahira Ullah, Sven Lautenbach, Benjamin Herfort, Marcel Reinmuth and Danijel Schorlemmer
E-Jahr:2023
Jahr:27 March 2023
Umfang:20 S.
Fussnoten:Gesehen am 31.07.2023
Titel Quelle:Enthalten in: International Society for Photogrammetry and Remote SensingISPRS International Journal of Geo-Information
Ort Quelle:Basel : MDPI, 2012
Jahr Quelle:2023
Band/Heft Quelle:12(2023), 4, Artikel-ID 143, Seite 1-20
ISSN Quelle:2220-9964
Abstract:Natural hazards threaten millions of people all over the world. To address this risk, exposure and vulnerability models with high resolution data are essential. However, in many areas of the world, exposure models are rather coarse and are aggregated over large areas. Although OpenStreetMap (OSM) offers great potential to assess risk at a detailed building-by-building level, the completeness of OSM building footprints is still heterogeneous. We present an approach to close this gap by means of crowd-sourcing based on the mobile app MapSwipe, where volunteers swipe through satellite images of a region collecting user feedback on classification tasks. For our application, MapSwipe was extended by a completeness feature that allows to classify a tile as “no building”, “complete” or “incomplete”. To assess the quality of the produced data, the completeness feature was applied to four regions. The MapSwipe-based assessment was compared with an intrinsic approach to quantify completeness and with the prediction of an existing model. Our results show that the crowd-sourced approach yields a reasonable classification performance of the completeness of OSM building footprints. Results showed that the MapSwipe-based assessment produced consistent estimates for the case study regions while the other two approaches showed a higher variability. Our study also revealed that volunteers tend to classify nearly completely mapped tiles as “complete”, especially in areas with a high OSM building density. Another factor that influenced the classification performance was the level of alignment of the OSM layer with the satellite imagery.
DOI:doi:10.3390/ijgi12040143
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.3390/ijgi12040143
 kostenfrei: Volltext: https://www.mdpi.com/2220-9964/12/4/143
 DOI: https://doi.org/10.3390/ijgi12040143
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:data completeness
 data quality
 disaster management
 exposure
 MapSwipe
 OpenStreetMap
 volunteered geographic information
K10plus-PPN:1853984744
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69102866   QR-Code
zum Seitenanfang