Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Cao, Han [VerfasserIn]   i
 Zhang, Youcheng [VerfasserIn]   i
 Baumbach, Jan [VerfasserIn]   i
 Burton, Paul R. [VerfasserIn]   i
 Dwyer, Dominic [VerfasserIn]   i
 Koutsouleris, Nikolaos [VerfasserIn]   i
 Matschinske, Julian [VerfasserIn]   i
 Marcon, Yannick [VerfasserIn]   i
 Rajan, Sivanesan [VerfasserIn]   i
 Rieger, Thilo [VerfasserIn]   i
 Ryser-Welch, Patricia [VerfasserIn]   i
 Späth, Julian [VerfasserIn]   i
 Herrmann, Carl [VerfasserIn]   i
 Schwarz, Emanuel [VerfasserIn]   i
Titel:dsMTL
Titelzusatz:a computational framework for privacy-preserving, distributed multi-task machine learning : data and text mining
Verf.angabe:Han Cao, Youcheng Zhang, Jan Baumbach, Paul R Burton, Dominic Dwyer, Nikolaos Koutsouleris, Julian Matschinske, Yannick Marcon, Sivanesan Rajan, Thilo Rieg, Patricia Ryser-Welch, Julian Späth, The COMMITMENT Consortium, Carl Herrmann and Emanuel Schwarz
E-Jahr:2022
Jahr:08 September 2022
Umfang:8 S.
Fussnoten:Gesehen am 01.08.2023
Titel Quelle:Enthalten in: Bioinformatics
Ort Quelle:Oxford : Oxford Univ. Press, 1998
Jahr Quelle:2022
Band/Heft Quelle:38(2022), 21 vom: Nov., Seite 4919-4926
ISSN Quelle:1367-4811
Abstract:In multi-cohort machine learning studies, it is critical to differentiate between effects that are reproducible across cohorts and those that are cohort-specific. Multi-task learning (MTL) is a machine learning approach that facilitates this differentiation through the simultaneous learning of prediction tasks across cohorts. Since multi-cohort data can often not be combined into a single storage solution, there would be the substantial utility of an MTL application for geographically distributed data sources.Here, we describe the development of ‘dsMTL’, a computational framework for privacy-preserving, distributed multi-task machine learning that includes three supervised and one unsupervised algorithms. First, we derive the theoretical properties of these methods and the relevant machine learning workflows to ensure the validity of the software implementation. Second, we implement dsMTL as a library for the R programming language, building on the DataSHIELD platform that supports the federated analysis of sensitive individual-level data. Third, we demonstrate the applicability of dsMTL for comorbidity modeling in distributed data. We show that comorbidity modeling using dsMTL outperformed conventional, federated machine learning, as well as the aggregation of multiple models built on the distributed datasets individually. The application of dsMTL was computationally efficient and highly scalable when applied to moderate-size (n < 500), real expression data given the actual network latency.dsMTL is freely available at https://github.com/transbioZI/dsMTLBase (server-side package) and https://github.com/transbioZI/dsMTLClient (client-side package).Supplementary data are available at Bioinformatics online.
DOI:doi:10.1093/bioinformatics/btac616
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1093/bioinformatics/btac616
 kostenfrei: Volltext: https://academic.oup.com/bioinformatics/article/38/21/4919/6694043?login=true
 DOI: https://doi.org/10.1093/bioinformatics/btac616
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1854037579
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69103333   QR-Code
zum Seitenanfang