Status: Bibliographieeintrag
Standort: ---
Exemplare:
---
| Online-Ressource |
Verfasst von: | Dončević, Daria [VerfasserIn]  |
| Herrmann, Carl [VerfasserIn]  |
Titel: | Biologically informed variational autoencoders allow predictive modeling of genetic and drug-induced perturbations |
Verf.angabe: | Daria Doncevic and Carl Herrmann |
E-Jahr: | 2023 |
Jahr: | June 2023 |
Umfang: | 12 S. |
Illustrationen: | Illustrationen |
Fussnoten: | Veröffentlicht: 16. Juni 2023 ; Gesehen am 17.08.2023 |
Titel Quelle: | Enthalten in: Bioinformatics |
Ort Quelle: | Oxford : Oxford Univ. Press, 1998 |
Jahr Quelle: | 2023 |
Band/Heft Quelle: | 39(2023), 6 vom: Juni, Artikel-ID btad387, Seite 1-12 |
ISSN Quelle: | 1367-4811 |
Abstract: | Variational autoencoders (VAEs) have rapidly increased in popularity in biological applications and have already successfully been used on many omic datasets. Their latent space provides a low-dimensional representation of input data, and VAEs have been applied, e.g. for clustering of single-cell transcriptomic data. However, due to their non-linear nature, the patterns that VAEs learn in the latent space remain obscure. Hence, the lower-dimensional data embedding cannot directly be related to input features.To shed light on the inner workings of VAE and enable direct interpretability of the model through its structure, we designed a novel VAE, OntoVAE (Ontology guided VAE) that can incorporate any ontology in its latent space and decoder part and, thus, provide pathway or phenotype activities for the ontology terms. In this work, we demonstrate that OntoVAE can be applied in the context of predictive modeling and show its ability to predict the effects of genetic or drug-induced perturbations using different ontologies and both, bulk and single-cell transcriptomic datasets. Finally, we provide a flexible framework, which can be easily adapted to any ontology and dataset.OntoVAE is available as a python package under https://github.com/hdsu-bioquant/onto-vae. |
DOI: | doi:10.1093/bioinformatics/btad387 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
kostenfrei: Volltext: https://doi.org/10.1093/bioinformatics/btad387 |
| DOI: https://doi.org/10.1093/bioinformatics/btad387 |
Datenträger: | Online-Ressource |
Sprache: | eng |
K10plus-PPN: | 1856422836 |
Verknüpfungen: | → Zeitschrift |
Biologically informed variational autoencoders allow predictive modeling of genetic and drug-induced perturbations / Dončević, Daria [VerfasserIn]; June 2023 (Online-Ressource)
69113604