Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Yuan, Tanwei [VerfasserIn]   i
 Edelmann, Dominic [VerfasserIn]   i
 Fan, Ziwen [VerfasserIn]   i
 Alwers, Elizabeth [VerfasserIn]   i
 Kather, Jakob Nikolas [VerfasserIn]   i
 Brenner, Hermann [VerfasserIn]   i
 Hoffmeister, Michael [VerfasserIn]   i
Titel:Machine learning in the identification of prognostic DNA methylation biomarkers among patients with cancer
Titelzusatz:a systematic review of epigenome-wide studies
Verf.angabe:Tanwei Yuan, Dominic Edelmann, Ziwen Fan, Elizabeth Alwers, Jakob Nikolas Kather, Hermann Brenner, Michael Hoffmeister
E-Jahr:2023
Jahr:September 2023
Umfang:12 S.
Fussnoten:Online veröffentlicht: 1. Juni 2023 ; Gesehen am 22.08.2023
Titel Quelle:Enthalten in: Artificial intelligence in medicine
Ort Quelle:Amsterdam [u.a.] : Elsevier Science, 1989
Jahr Quelle:2023
Band/Heft Quelle:143(2023) vom: Sept., Artikel-ID 102589, Seite 1-12
ISSN Quelle:1873-2860
Abstract:Background - DNA methylation biomarkers have great potential in improving prognostic classification systems for patients with cancer. Machine learning (ML)-based analytic techniques might help overcome the challenges of analyzing high-dimensional data in relatively small sample sizes. This systematic review summarizes the current use of ML-based methods in epigenome-wide studies for the identification of DNA methylation signatures associated with cancer prognosis. - Methods - We searched three electronic databases including PubMed, EMBASE, and Web of Science for articles published until 2 January 2023. ML-based methods and workflows used to identify DNA methylation signatures associated with cancer prognosis were extracted and summarized. Two authors independently assessed the methodological quality of included studies by a seven-item checklist adapted from 'A Tool to Assess Risk of Bias and Applicability of Prediction Model Studies (PROBAST)' and from the 'Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK). Different ML methods and workflows used in included studies were summarized and visualized by a sunburst chart, a bubble chart, and Sankey diagrams, respectively. - Results - Eighty-three studies were included in this review. Three major types of ML-based workflows were identified. 1) unsupervised clustering, 2) supervised feature selection, and 3) deep learning-based feature transformation. For the three workflows, the most frequently used ML techniques were consensus clustering, least absolute shrinkage and selection operator (LASSO), and autoencoder, respectively. The systematic review revealed that the performance of these approaches has not been adequately evaluated yet and that methodological and reporting flaws were common in the identified studies using ML techniques. - Conclusions - There is great heterogeneity in ML-based methodological strategies used by epigenome-wide studies to identify DNA methylation markers associated with cancer prognosis. In theory, most existing workflows could not handle the high multi-collinearity and potentially non-linearity interactions in epigenome-wide DNA methylation data. Benchmarking studies are needed to compare the relative performance of various approaches for specific cancer types. Adherence to relevant methodological and reporting guidelines are urgently needed.
DOI:doi:10.1016/j.artmed.2023.102589
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1016/j.artmed.2023.102589
 kostenfrei: Volltext: https://www.sciencedirect.com/science/article/pii/S0933365723001033
 DOI: https://doi.org/10.1016/j.artmed.2023.102589
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Artificial intelligence
 Cancer prognosis
 DNA methylation
 Epigenetic biomarkers
 Epigenome-wide studies
 Machine learning
 Systematic review
K10plus-PPN:1857588630
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69115128   QR-Code
zum Seitenanfang