Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Liu, Chin-Fu [VerfasserIn]   i
 Zhao, Yi [VerfasserIn]   i
 Yedavalli, Vivek [VerfasserIn]   i
 Hacke, Werner [VerfasserIn]   i
Titel:Automatic comprehensive radiological reports for clinical acute stroke MRIs
Verf.angabe:Chin-Fu Liu, Yi Zhao, Vivek Yedavalli, Richard Leigh, Vitor Falcao, on behalf of the STIR and VISTA Imaging investigators [Werner Hacke und 16 weitere Autoren], Michael I. Miller, Argye E. Hillis and Andreia V. Faria
Jahr:2023
Umfang:13 S.
Illustrationen:Illustrationen
Fussnoten:Published online: 10 July 2023 ; Gesehen am 01.09.2023
Titel Quelle:Enthalten in: Communications medicine
Ort Quelle:[London] : Springer Nature, 2021
Jahr Quelle:2023
Band/Heft Quelle:3(2023), 1, Seite 1-13
ISSN Quelle:2730-664X
Abstract:BACKGROUND: Although artificial intelligence systems that diagnosis among different conditions from medical images are long term aims, specific goals for automation of human-labor, time-consuming tasks are not only feasible but equally important. Acute conditions that require quantitative metrics, such as acute ischemic strokes, can greatly benefit by the consistency, objectiveness, and accessibility of automated radiological reports. METHODS: We used 1,878 annotated brain MRIs to generate a fully automated system that outputs radiological reports in addition to the infarct volume, 3D digital infarct mask, and the feature vector of anatomical regions affected by the acute infarct. This system is associated to a deep-learning algorithm for segmentation of the ischemic core and to parcellation schemes defining arterial territories and classically-identified anatomical brain structures. RESULTS: Here we show that the performance of our system to generate radiological reports was comparable to that of an expert evaluator. The weight of the components of the feature vectors that supported the prediction of the reports, as well as the prediction probabilities are outputted, making the pre-trained models behind our system interpretable. The system is publicly available, runs in real time, in local computers, with minimal computational requirements, and it is readily useful for non-expert users. It supports large-scale processing of new and legacy data, enabling clinical and translational research. CONCLUSION: The generation of reports indicates that our fully automated system is able to extract quantitative, objective, structured, and personalized information from stroke MRIs.
DOI:doi:10.1038/s43856-023-00327-4
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1038/s43856-023-00327-4
 DOI: https://doi.org/10.1038/s43856-023-00327-4
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1858510848
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69117968   QR-Code
zum Seitenanfang