Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Vladimirov, Nikita [VerfasserIn]   i
 Lebiedz, Dirk [VerfasserIn]   i
 Sourjik, Victor [VerfasserIn]   i
Titel:Predicted auxiliary navigation mechanism of peritrichously flagellated chemotactic bacteria
Verf.angabe:Nikita Vladimirov, Dirk Lebiedz, Victor Sourjik
E-Jahr:2010
Jahr:March 19, 2010
Umfang:8 S.
Fussnoten:Gesehen am 07.09.2023
Titel Quelle:Enthalten in: Public Library of SciencePLoS Computational Biology
Ort Quelle:San Francisco, Calif. : Public Library of Science, 2005
Jahr Quelle:2010
Band/Heft Quelle:6(2010), 3 vom: März, Artikel-ID e1000717, Seite 1-8
ISSN Quelle:1553-7358
Abstract:Chemotactic movement of Escherichia coli is one of the most thoroughly studied paradigms of simple behavior. Due to significant competitive advantage conferred by chemotaxis and to high evolution rates in bacteria, the chemotaxis system is expected to be strongly optimized. Bacteria follow gradients by performing temporal comparisons of chemoeffector concentrations along their runs, a strategy which is most efficient given their size and swimming speed. Concentration differences are detected by a sensory system and transmitted to modulate rotation of flagellar motors, decreasing the probability of a tumble and reorientation if the perceived concentration change during a run is positive. Such regulation of tumble probability is of itself sufficient to explain chemotactic drift of a population up the gradient, and is commonly assumed to be the only navigation mechanism of chemotactic E. coli. Here we use computer simulations to predict existence of an additional mechanism of gradient navigation in E. coli. Based on the experimentally observed dependence of cell tumbling angle on the number of switching motors, we suggest that not only the tumbling probability but also the degree of reorientation during a tumble depend on the swimming direction along the gradient. Although the difference in mean tumbling angles up and down the gradient predicted by our model is small, it results in a dramatic enhancement of the cellular drift velocity along the gradient. We thus demonstrate a new level of optimization in E. coli chemotaxis, which arises from the switching of several flagellar motors and a resulting fine tuning of tumbling angle. Similar strategy is likely to be used by other peritrichously flagellated bacteria, and indicates yet another level of evolutionary development of bacterial chemotaxis.
DOI:doi:10.1371/journal.pcbi.1000717
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1371/journal.pcbi.1000717
 kostenfrei: Volltext: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000717
 DOI: https://doi.org/10.1371/journal.pcbi.1000717
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Anisotropy
 Bacterial evolution
 Cell swimming
 Chemotaxis
 Flagella
 Flagellar rotation
 Methylation
 Swimming
K10plus-PPN:1859074219
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69120601   QR-Code
zum Seitenanfang