Standort: ---
Exemplare:
---
| Online-Ressource |
Verfasst von: | Sharan, Lalith [VerfasserIn]  |
| Romano, Gabriele [VerfasserIn]  |
| Brand, Julian [VerfasserIn]  |
| Kelm, Halvar [VerfasserIn]  |
| Karck, Matthias [VerfasserIn]  |
| De Simone, Raffaele [VerfasserIn]  |
| Engelhardt, Sandy [VerfasserIn]  |
Titel: | Point detection through multi-instance deep heatmap regression for sutures in endoscopy |
Verf.angabe: | Lalith Sharan, Gabriele Romano, Julian Brand, Halvar Kelm, Matthias Karck, Raffaele De Simone, Sandy Engelhardt |
E-Jahr: | 2021 |
Jahr: | 08 November 2021 |
Umfang: | 11 S. |
Fussnoten: | Gesehen am 15.09.2023 |
Titel Quelle: | Enthalten in: International journal of computer assisted radiology and surgery |
Ort Quelle: | Berlin : Springer, 2006 |
Jahr Quelle: | 2021 |
Band/Heft Quelle: | 16(2021), 12, Seite 2107-2117 |
ISSN Quelle: | 1861-6429 |
Abstract: | Mitral valve repair is a complex minimally invasive surgery of the heart valve. In this context, suture detection from endoscopic images is a highly relevant task that provides quantitative information to analyse suturing patterns, assess prosthetic configurations and produce augmented reality visualisations. Facial or anatomical landmark detection tasks typically contain a fixed number of landmarks, and use regression or fixed heatmap-based approaches to localize the landmarks. However in endoscopy, there are a varying number of sutures in every image, and the sutures may occur at any location in the annulus, as they are not semantically unique. |
DOI: | doi:10.1007/s11548-021-02523-w |
URL: | kostenfrei: Volltext: https://doi.org/10.1007/s11548-021-02523-w |
| DOI: https://doi.org/10.1007/s11548-021-02523-w |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | Endoscopy |
| Mitral valve repair |
| Point detection |
K10plus-PPN: | 1859579728 |
Verknüpfungen: | → Zeitschrift |
|
|
| |
Lokale URL UB: | Zum Volltext |
Point detection through multi-instance deep heatmap regression for sutures in endoscopy / Sharan, Lalith [VerfasserIn]; 08 November 2021 (Online-Ressource)
69122031