Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Özateş, Mustafa Erkam [VerfasserIn]   i
 Karabulut, Derya [VerfasserIn]   i
 Salami, Firooz [VerfasserIn]   i
 Wolf, Sebastian Immanuel [VerfasserIn]   i
 Arslan, Yunus Ziya [VerfasserIn]   i
Titel:Machine learning-based prediction of joint moments based on kinematics in patients with cerebral palsy
Verf.angabe:Mustafa Erkam Ozates, Derya Karabulut, Firooz Salami, Sebastian Immanuel Wolf, Yunus Ziya Arslan
E-Jahr:2023
Jahr:3 June 2023
Umfang:9 S.
Fussnoten:Online verfügbar 27 May 2023, Version des Artikels 3 June 2023 ; Gesehen am 20.09.2023
Titel Quelle:Enthalten in: Journal of biomechanics
Ort Quelle:Amsterdam [u.a.] : Elsevier Science, 1968
Jahr Quelle:2023
Band/Heft Quelle:155(2023) vom: Juni, Artikel-ID 111668, Seite 1-9
ISSN Quelle:1873-2380
Abstract:Joint moments during gait provide valuable information for clinical decision-making in patients with cerebral palsy (CP). Joint moments are calculated based on ground reaction forces (GRF) using inverse dynamics models. Obtaining GRF from patients with CP is challenging. Typically developed (TD) individuals' joint moments were predicted from joint angles using machine learning, but no such study has been conducted on patients with CP. Accordingly, we aimed to predict the dorsi-plantar flexion, knee flexion-extension, hip flexion-extension, and hip adduction-abduction moments based on the trunk, pelvis, hip, knee, and ankle kinematics during gait in patients with CP and TD individuals using one-dimensional convolutional neural networks (CNN). The anonymized retrospective gait data of 329 TD (26 years ± 14, mass: 70 kg ± 15, height: 167 cm ± 89) and 917 CP (17 years ± 9, mass:47 kg ± 19, height:153 cm ± 36) individuals were evaluated and after applying inclusion-exclusion criteria, 132 TD and 622 CP patients with spastic diplegia were selected. We trained specific CNN models and evaluated their performance using isolated test subject groups based on normalized root mean square error (nRMSE) and Pearson correlation coefficient (PCC). Joint moments were predicted with nRMSE between 18.02% and 13.58% for the CP and between 12.55% and 8.58% for the TD groups, whereas with PCC between 0.85 and 0.93 for the CP and between 0.94 and 0.98 for the TD groups. Machine learning-based joint moment prediction from kinematics could replace conventional moment calculation in CP patients in the future, but the current level of prediction errors restricts its use for clinical decision-making today.
DOI:doi:10.1016/j.jbiomech.2023.111668
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1016/j.jbiomech.2023.111668
 Volltext: https://www.sciencedirect.com/science/article/pii/S0021929023002373
 DOI: https://doi.org/10.1016/j.jbiomech.2023.111668
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Cerebral palsy
 Computational gait analysis
 Convolutional neural networks
 Gait kinematics
 Joint moments
 Machine Learning
K10plus-PPN:1860048471
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69123333   QR-Code
zum Seitenanfang