Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Künsch, Christophe [VerfasserIn]   i
 Fürer, Lukas [VerfasserIn]   i
 Steppan, Martin [VerfasserIn]   i
 Schenk, Nathalie [VerfasserIn]   i
 Blum, Kathrin [VerfasserIn]   i
 Kaess, Michael [VerfasserIn]   i
 Koenig, Julian [VerfasserIn]   i
 Schmeck, Klaus [VerfasserIn]   i
 Zimmermann, Ronan [VerfasserIn]   i
Titel:Withdrawal ruptures in adolescents with borderline personality disorder psychotherapy are marked by increased speech pauses-can minimal responses be automatically detected?
Verf.angabe:Christophe Künsch, Lukas Fürer, Martin Steppan, Nathalie Schenk, Kathrin Blum, Michael Kaess, Julian Koenig, Klaus Schmeck, Ronan Zimmermann
E-Jahr:2023
Jahr:January 17, 2023
Umfang:19 S.
Fussnoten:Gesehen am 21.09.2023
Titel Quelle:Enthalten in: PLOS ONE
Ort Quelle:San Francisco, California, US : PLOS, 2006
Jahr Quelle:2023
Band/Heft Quelle:18(2023), 1, Artikel-ID e0280329, Seite 1-19
ISSN Quelle:1932-6203
Abstract:Alliance ruptures of the withdrawal type are prevalent in adolescents with borderline personality disorder (BPD). Longer speech pauses are negatively perceived by these patients. Safran and Muran’s rupture model is promising but its application is very work intensive. This workload makes research costly and limits clinical usage. We hypothesised that pauses can be used to automatically detect one of the markers of the rupture model i.e. the minimal response marker. Additionally, the association of withdrawal ruptures with pauses was investigated. A total of 516 ruptures occurring in 242 psychotherapy sessions collected in 22 psychotherapies of adolescent patients with BPD and subthreshold BPD were investigated. Trained observers detected ruptures based on video and audio recordings. In contrast, pauses were automatically marked in the audio-recordings of the psychotherapy sessions and automatic speaker diarisation was used to determine the speaker-switching patterns in which the pauses occur. A random forest classifier detected time frames in which ruptures with the minimal response marker occurred based on the quantity of pauses. Performance was very good with an area under the ROC curve of 0.89. Pauses which were both preceded and followed by therapist speech were the most important predictors for minimal response ruptures. Research costs can be reduced by using machine learning techniques instead of manual rating for rupture detection. In combination with other video and audio derived features like movement analysis or automatic facial emotion detection, more complete rupture detection might be possible in the future. These innovative machine learning techniques help to narrow down the mechanisms of change of psychotherapy, here specifically of the therapeutic alliance. They might also be used to technologically augment psychotherapy training and supervision.
DOI:doi:10.1371/journal.pone.0280329
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1371/journal.pone.0280329
 Volltext: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0280329
 DOI: https://doi.org/10.1371/journal.pone.0280329
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Adolescents
 Audio equipment
 Machine learning
 Mental health therapies
 Personality disorders
 Psychotherapy
 Speech signal processing
 Speech therapy
K10plus-PPN:1860131867
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69123988   QR-Code
zum Seitenanfang