Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Brugnara, Gianluca [VerfasserIn]   i
 Baumgartner, Michael [VerfasserIn]   i
 Scholze, Edwin [VerfasserIn]   i
 Deike-Hofmann, Katerina [VerfasserIn]   i
 Kades, Klaus [VerfasserIn]   i
 Scherer, Jonas [VerfasserIn]   i
 Denner, Stefan [VerfasserIn]   i
 Meredig, Hagen [VerfasserIn]   i
 Rastogi, Aditya [VerfasserIn]   i
 Mahmutoglu, Mustafa A. [VerfasserIn]   i
 Ulfert, Christian [VerfasserIn]   i
 Neuberger, Ulf [VerfasserIn]   i
 Schönenberger, Silvia [VerfasserIn]   i
 Schlamp, Kai [VerfasserIn]   i
 Wick, Wolfgang [VerfasserIn]   i
 Ringleb, Peter A. [VerfasserIn]   i
 Floca, Ralf [VerfasserIn]   i
 Möhlenbruch, Markus Alfred [VerfasserIn]   i
 Radbruch, Alexander [VerfasserIn]   i
 Bendszus, Martin [VerfasserIn]   i
 Maier-Hein, Klaus H. [VerfasserIn]   i
 Vollmuth, Philipp [VerfasserIn]   i
Titel:Deep-learning based detection of vessel occlusions on CT-angiography in patients with suspected acute ischemic stroke
Verf.angabe:Gianluca Brugnara, Michael Baumgartner, Edwin David Scholze, Katerina Deike-Hofmann, Klaus Kades, Jonas Scherer, Stefan Denner, Hagen Meredig, Aditya Rastogi, Mustafa Ahmed Mahmutoglu, Christian Ulfert, Ulf Neuberger, Silvia Schönenberger, Kai Schlamp, Zeynep Bendella, Thomas Pinetz, Carsten Schmeel, Wolfgang Wick, Peter A. Ringleb, Ralf Floca, Markus Möhlenbruch, Alexander Radbruch, Martin Bendszus, Klaus Maier-Hein, Philipp Vollmuth
E-Jahr:2023
Jahr:15 August 2023
Umfang:15 S.
Fussnoten:Gesehen am 21.09.2023
Titel Quelle:Enthalten in: Nature Communications
Ort Quelle:[London] : Springer Nature, 2010
Jahr Quelle:2023
Band/Heft Quelle:14(2023), Artikel-ID 4938, Seite 1-15
ISSN Quelle:2041-1723
Abstract:Swift diagnosis and treatment play a decisive role in the clinical outcome of patients with acute ischemic stroke (AIS), and computer-aided diagnosis (CAD) systems can accelerate the underlying diagnostic processes. Here, we developed an artificial neural network (ANN) which allows automated detection of abnormal vessel findings without any a-priori restrictions and in <2 minutes. Pseudo-prospective external validation was performed in consecutive patients with suspected AIS from 4 different hospitals during a 6-month timeframe and demonstrated high sensitivity (≥87%) and negative predictive value (≥93%). Benchmarking against two CE- and FDA-approved software solutions showed significantly higher performance for our ANN with improvements of 25-45% for sensitivity and 4-11% for NPV (p ≤ 0.003 each). We provide an imaging platform (https://stroke.neuroAI-HD.org) for online processing of medical imaging data with the developed ANN, including provisions for data crowdsourcing, which will allow continuous refinements and serve as a blueprint to build robust and generalizable AI algorithms.
DOI:doi:10.1038/s41467-023-40564-8
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1038/s41467-023-40564-8
 Volltext: https://www.nature.com/articles/s41467-023-40564-8
 DOI: https://doi.org/10.1038/s41467-023-40564-8
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Computer science
 Diagnostic markers
 Stroke
K10plus-PPN:1860135056
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69123999   QR-Code
zum Seitenanfang