Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Albert, Steffen [VerfasserIn]   i
 Wichtmann, Barbara [VerfasserIn]   i
 Zhao, Wenzhao [VerfasserIn]   i
 Maurer, Angelika [VerfasserIn]   i
 Hesser, Jürgen [VerfasserIn]   i
 Attenberger, Ulrike [VerfasserIn]   i
 Schad, Lothar R. [VerfasserIn]   i
 Zöllner, Frank G. [VerfasserIn]   i
Titel:Comparison of image normalization methods for multi-site deep learning
Verf.angabe:Steffen Albert, Barbara D. Wichtmann, Wenzhao Zhao, Angelika Maurer, Jürgen Hesser, Ulrike I. Attenberger, Lothar R. Schad and Frank G. Zöllner
Jahr:2023
Umfang:13 S.
Fussnoten:Veröffentlicht: 3. August 2023 ; Gesehen am 27.09.2023
Titel Quelle:Enthalten in: Applied Sciences
Ort Quelle:Basel : MDPI, 2011
Jahr Quelle:2023
Band/Heft Quelle:13(2023), 15, Artikel-ID 8923, Seite 1-13
ISSN Quelle:2076-3417
Abstract:In this study, we evaluate the influence of normalization on the performance of deep learning networks for tumor segmentation and the prediction of the pathological response of locally advanced rectal cancer to neoadjuvant chemoradiotherapy. The techniques were applied to a multicenter and multimodal magnet resonance imaging data set consisting of 201 patients recorded at six centers. We implemented and investigated six different normalization methods (setting the mean and standard deviation, histogram matching, percentiles, combining percentiles and histogram matching, fixed window and an auto-encoder with adversarial loss using the imaging parameters) and evaluated their impact on four deep learning tasks: tumor segmentation, prediction of treatment outcome, and prediction of sex and age. The latter two tasks were implemented as a reference test. We trained a modified U-Net with different normalization methods in multiple configurations: on all images, images from all centers except one, and images from a single center. Our results show that normalization only plays a minor role in segmentation, with a difference in Dice of less than 0.02 between the best and worst performing networks. For the prediction of sex and treatment outcomes, the percentile method combined with histogram matching works best for all scenarios. The biggest difference in performance, depending on the normalization method, occurs for classification. In conclusion, normalization is especially important for small data sets or for generalizing to different data distributions. The deep learning method was superior to the classical methods only in a minority of cases, probably due to the limited amount of training data.
DOI:doi:10.3390/app13158923
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.3390/app13158923
 kostenfrei: Volltext: https://www.mdpi.com/2076-3417/13/15/8923
 DOI: https://doi.org/10.3390/app13158923
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:medical imaging
 MRI
 normalization
K10plus-PPN:1860346987
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69124776   QR-Code
zum Seitenanfang