Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Hühn, León-Alexander [VerfasserIn]   i
 Bitsch, Bertram [VerfasserIn]   i
Titel:How accretion of planet-forming disks influences stellar abundances
Verf.angabe:L.-A. Hühn and B. Bitsch
Jahr:2023
Umfang:23 S.
Illustrationen:Illustrationen
Fussnoten:Online veröffentlicht: 11. August 2023 ; Gesehen am 28.09.2023
Titel Quelle:Enthalten in: Astronomy and astrophysics
Ort Quelle:Les Ulis : EDP Sciences, 1969
Jahr Quelle:2023
Band/Heft Quelle:676(2023) vom: Aug., Artikel-ID A87, Seite 1-23
ISSN Quelle:1432-0746
Abstract:Millimeter-sized dust grains experience radial velocities exceeding the gas velocities by orders of magnitude. The viscous evolution of the accretion disk adds disk material onto the central star's convective envelope, influencing its elemental abundances, [X/H]. At the same time, the envelope mass shrinks as the stellar age increases, amplifying the rate of abundance change. Therefore, the elemental abundances of the star are sensitive to disk processes that alter the composition and timing of disk accretion. We performed numerical 1D log-radial simulations integrating the disk advection-diffusion equation, while accounting for evaporation and condensation of chemical species at the evaporation fronts. They reveal a peak of refractory abundance within the first 2 Myr of Δ[X/H] ~ 5 × 10−2 if grain growth is significant, but subsequent accretion diminishes previous refractory abundance increases for long-lived disks. Planet formation can reduce the abundance of dust species whose evaporation fronts lie within the planet's orbit by preventing solids from reaching the inner edge once the planet starts opening a gap exerting a pressure bump exterior to its orbit and consequently blocking inward drifting pebbles. We expect the accretion of the solar protoplanetary disk with Jupiter present to have changed the Sun's elemental abundances by ~1 × 10−2 throughout its lifetime. These considerations were also applied to the HD106515 wide binary system. We find that measurements of Δ[X/H] are in reasonable agreement with results from simulations where the observed giant planet around HD106515 A is included and if HD106515B's disk formed planetesimals more efficiently. Simulations where the planet formed inside the water ice line are more favorable to agree with observations. Even though the general changes in the stellar abundances due to disk accretion are small, they are detectable at current sensitivities, indicating that the methods presented here can be used to constrain the planet formation pathway.
DOI:doi:10.1051/0004-6361/202346604
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://dx.doi.org/10.1051/0004-6361/202346604
 kostenfrei: Volltext: https://ui.adsabs.harvard.edu/abs/2023A&A...676A..87H
 DOI: https://doi.org/10.1051/0004-6361/202346604
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:astrophysics - earth and planetary astrophysics
 astrophysics - solar and stellar astrophysics
 methods: numerical
 planet-disk interactions
 planet-star interactions
 planets and satellites: formation
 protoplanetary disks
 stars: abundances
K10plus-PPN:1860486290
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69125282   QR-Code
zum Seitenanfang