| Online-Ressource |
Verfasst von: | Kaiser, Jakob [VerfasserIn]  |
| Stock, Raphael [VerfasserIn]  |
| Müller, Eric [VerfasserIn]  |
| Schemmel, Johannes [VerfasserIn]  |
| Schmitt, Sebastian [VerfasserIn]  |
Titel: | Simulation-based inference for model parameterization on analog neuromorphic hardware [data] |
Verf.angabe: | Jakob Kaiser, Raphael Stock, Eric Müller, Johannes Schemmel, Sebastian Schmitt |
Verlagsort: | Heidelberg |
Verlag: | Universität |
E-Jahr: | 2023 |
Jahr: | 2023-09-28 |
Umfang: | 1 Online-Ressource (2 Files) |
Fussnoten: | Gesehen am 02.10.2023 |
Abstract: | This data is presented in the paper "Simulation-based Inference for Model Parameterization on Analog Neuromorphic Hardware". The abstract reads as follows: The BrainScaleS-2 (BSS-2) system implements physical models of neurons as well as synapses and aims for an energy-efficient and fast emulation of biological neurons. When replicating neuroscientific experiments on BSS-2, a major challenge is finding suitable model parameters. This study investigates the suitability of the sequential neural posterior estimation (SNPE) algorithm for parameterizing a multi-compartmental neuron model emulated on the BSS-2 analog neuromorphic system. In contrast to other optimization methods such as genetic algorithms or stochastic searches, the SNPE algorithms belongs to the class of simulation-based inference (SBI) methods and estimates the posterior distribution of the model parameters; access to the posterior allows quantifying the confidence in parameter estimations and unveiling correlation between model parameters. For our multi-compartmental model, we show that the approximated posterior agrees with experimental observations and that the identified correlation between parameters fits theoretical expectations. Furthermore, as already shown for software simulations, the algorithm can deal with high-dimensional observations and parameter spaces when the data is generated by emulations on BSS-2. These results suggest that the SNPE algorithm is a promising approach for automating the parameterization and the analyzation of complex models, especially when dealing with characteristic properties of analog neuromorphic substrates, such as trial-to-trial variations or limited parameter ranges. |
DOI: | doi:10.11588/data/AVFF2E |
URL: | kostenfrei: Volltext: https://doi.org/10.11588/data/AVFF2E |
| kostenfrei: Volltext: https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/data/AVFF2E |
| DOI: https://doi.org/10.11588/data/AVFF2E |
Datenträger: | Online-Ressource |
Dokumenttyp: | Forschungsdaten |
| Datenbank |
Sprache: | eng |
Bibliogr. Hinweis: | Forschungsdaten zu: Kaiser, Jakob: Simulation-based Inference for model parameterization on analog neuromorphic hardware |
Sonstige Nr.: | Grant number: 604102, HBP |
| Grant number: 720270, HBP SGA1 |
| Grant number: 85907, HBP SGA2 |
| Grant number: 945539, HBP SGA3 |
| Grant number: EXC 2181/1-390900948, DFG |
K10plus-PPN: | 1860618820 |
|
|
| |
Lokale URL UB: | Zum Volltext |
Simulation-based inference for model parameterization on analog neuromorphic hardware [data] / Kaiser, Jakob [VerfasserIn]; 2023-09-28 (Online-Ressource)