Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Ilicak, Efe [VerfasserIn]   i
 Saritas, Emine Ulku [VerfasserIn]   i
 Çukur, Tolga [VerfasserIn]   i
Titel:Automated parameter selection for accelerated MRI reconstruction via low-rank modeling of local k-space neighborhoods
Verf.angabe:Efe Ilicak, Emine Ulku Saritas, Tolga Çukur
Jahr:2023
Umfang:17 S.
Fussnoten:Gesehen am 06.10.2023
Titel Quelle:Enthalten in: Zeitschrift für medizinische Physik
Ort Quelle:Amsterdam [u.a.] : Elsevier, 1990
Jahr Quelle:2023
Band/Heft Quelle:33(2023), 2, Seite 203-219
ISSN Quelle:1876-4436
Abstract:Purpose - Image quality in accelerated MRI rests on careful selection of various reconstruction parameters. A common yet tedious and error-prone practice is to hand-tune each parameter to attain visually appealing reconstructions. Here, we propose a parameter tuning strategy to automate hybrid parallel imaging (PI) - compressed sensing (CS) reconstructions via low-rank modeling of local k-space neighborhoods (LORAKS) supplemented with sparsity regularization in wavelet and total variation (TV) domains. - Methods - For low-rank regularization, we leverage a soft-thresholding operation based on singular values for matrix rank selection in LORAKS. For sparsity regularization, we employ Stein's unbiased risk estimate criterion to select the wavelet regularization parameter and local standard deviation of reconstructions to select the TV regularization parameter. Comprehensive demonstrations are presented on a numerical brain phantom and in vivo brain and knee acquisitions. Quantitative assessments are performed via PSNR, SSIM and NMSE metrics. - Results - The proposed hybrid PI-CS method improves reconstruction quality compared to PI-only techniques, and it achieves on par image quality to reconstructions with brute-force optimization of reconstruction parameters. These results are prominent across several different datasets and the range of examined acceleration rates. - Conclusion - A data-driven parameter tuning strategy to automate hybrid PI-CS reconstructions is presented. The proposed method achieves reliable reconstructions of accelerated multi-coil MRI datasets without the need for exhaustive hand-tuning of reconstruction parameters.
DOI:doi:10.1016/j.zemedi.2022.02.002
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1016/j.zemedi.2022.02.002
 kostenfrei: Volltext: https://www.sciencedirect.com/science/article/pii/S0939388922000083
 DOI: https://doi.org/10.1016/j.zemedi.2022.02.002
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Compressed sensing
 Low rank
 Parallel imaging
 Parameter selection
 Regularization
 Self tuning
K10plus-PPN:1860891977
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69127627   QR-Code
zum Seitenanfang