| Online-Ressource |
Verfasst von: | Zharov, Yaroslav [VerfasserIn]  |
| Ametova, Evelina [VerfasserIn]  |
| Spiecker, Rebecca [VerfasserIn]  |
| Baumbach, Tilo [VerfasserIn]  |
| Burca, Genoveva [VerfasserIn]  |
| Heuveline, Vincent [VerfasserIn]  |
Titel: | Shot noise reduction in radiographic and tomographic multi-channel imaging with self-supervised deep learning |
Verf.angabe: | Yaroslav Zharov, Evelina Ametova, Rebecca Spiecker, Tilo Baumbach, Genoveva Burca, and Vincent Heuveline |
E-Jahr: | 2023 |
Jahr: | Jul 2023 |
Umfang: | 19 S. |
Illustrationen: | Illustrationen |
Fussnoten: | Online veröffentlicht am 24. Juli 2023 ; Gesehen am 07.12.2023 |
Titel Quelle: | Enthalten in: Optics express |
Ort Quelle: | Washington, DC : Optica, 1997 |
Jahr Quelle: | 2023 |
Band/Heft Quelle: | 31(2023), 16, Seite 26226-26244 |
ISSN Quelle: | 1094-4087 |
Abstract: | Shot noise is a critical issue in radiographic and tomographic imaging, especially when additional constraints lead to a significant reduction of the signal-to-noise ratio. This paper presents a method for improving the quality of noisy multi-channel imaging datasets, such as data from time or energy-resolved imaging, by exploiting structural similarities between channels. To achieve that, we broaden the application domain of the Noise2Noise self-supervised denoising approach. The method draws pairs of samples from a data distribution with identical signals but uncorrelated noise. It is applicable to multi-channel datasets if adjacent channels provide images with similar enough information but independent noise. We demonstrate the applicability and performance of the method via three case studies, namely spectroscopic X-ray tomography, energy-dispersive neutron tomography, and in vivo X-ray cine-radiography. |
DOI: | doi:10.1364/OE.492221 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext: https://doi.org/10.1364/OE.492221 |
| Volltext: https://opg.optica.org/oe/abstract.cfm?uri=oe-31-16-26226 |
| DOI: https://doi.org/10.1364/OE.492221 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | Image processing |
| Image quality |
| Image reconstruction |
| Medical imaging |
| Multichannel imaging |
| Phase shift |
K10plus-PPN: | 1861508034 |
Verknüpfungen: | → Zeitschrift |
Shot noise reduction in radiographic and tomographic multi-channel imaging with self-supervised deep learning / Zharov, Yaroslav [VerfasserIn]; Jul 2023 (Online-Ressource)