Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Schwarz, Jonathan [VerfasserIn]   i
 Cassel, Jonas [VerfasserIn]   i
 Boll, Bastian [VerfasserIn]   i
 Gärttner, Martin [VerfasserIn]   i
 Albers, Peter [VerfasserIn]   i
 Schnörr, Christoph [VerfasserIn]   i
Titel:Quantum state assignment flows
Verf.angabe:Jonathan Schwarz, Jonas Cassel, Bastian Boll, Martin Gärttner, Peter Albers and Christoph Schnörr
E-Jahr:2023
Jahr:23 August 2023
Umfang:36 S.
Fussnoten:Gesehen am 13.11.2023
Titel Quelle:Enthalten in: Entropy
Ort Quelle:Basel : MDPI, 1999
Jahr Quelle:2023
Band/Heft Quelle:25(2023), 9, Artikel-ID 1253, Seite 1-16
ISSN Quelle:1099-4300
Abstract:This paper introduces assignment flows for density matrices as state spaces for representation and analysis of data associated with vertices of an underlying weighted graph. Determining an assignment flow by geometric integration of the defining dynamical system causes an interaction of the non-commuting states across the graph, and the assignment of a pure (rank-one) state to each vertex after convergence. Adopting the Riemannian-Bogoliubov-Kubo-Mori metric from information geometry leads to closed-form local expressions that can be computed efficiently and implemented in a fine-grained parallel manner. Restriction to the submanifold of commuting density matrices recovers the assignment flows for categorical probability distributions, which merely assign labels from a finite set to each data point. As shown for these flows in our prior work, the novel class of quantum state assignment flows can also be characterized as Riemannian gradient flows with respect to a non-local, non-convex potential after proper reparameterization and under mild conditions on the underlying weight function. This weight function generates the parameters of the layers of a neural network corresponding to and generated by each step of the geometric integration scheme. Numerical results indicate and illustrate the potential of the novel approach for data representation and analysis, including the representation of correlations of data across the graph by entanglement and tensorization.
DOI:doi:10.3390/e25091253
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.3390/e25091253
 Volltext: https://www.mdpi.com/1099-4300/25/9/1253
 DOI: https://doi.org/10.3390/e25091253
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:assignment flows
 density matrix
 information geometry
 Riemannian gradient flows
K10plus-PPN:1870135830
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69142309   QR-Code
zum Seitenanfang