Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Zürn, Christoph Manuel [VerfasserIn]   i
 Hübner, David [VerfasserIn]   i
 Ziesenitz, Victoria C. [VerfasserIn]   i
 Höhn, René Gerhard Joachim [VerfasserIn]   i
 Schuler, Lena [VerfasserIn]   i
 Schlange, Tim [VerfasserIn]   i
 Gorenflo, Matthias [VerfasserIn]   i
 Kari, Fabian Alexander [VerfasserIn]   i
 Kroll, Johannes [VerfasserIn]   i
 Loukanov, Tsvetomir [VerfasserIn]   i
 Klemm, Rolf [VerfasserIn]   i
 Stiller, Brigitte [VerfasserIn]   i
Titel:Model-driven survival prediction after congenital heart surgery
Verf.angabe:Christoph Zürn, David Hübner, Victoria C. Ziesenitz, René Höhn, Lena Schuler, Tim Schlange, Matthias Gorenflo, Fabian A. Kari, Johannes Kroll, Tsvetomir Loukanov, Rolf Klemm and Brigitte Stiller
E-Jahr:2023
Jahr:September 2023
Umfang:7 S.
Illustrationen:Illustrationen
Fussnoten:Online verfügbar: 05. Juni 2023, Artikelversion: 10. September 2023 ; Gesehen am 14.11.2023
Titel Quelle:Enthalten in: Interdisciplinary cardiovascular and thoracic surgery
Ort Quelle:Oxford : Oxford University Press, 2023
Jahr Quelle:2023
Band/Heft Quelle:37(2023), 3 vom: Sept., Artikel-ID ivad089, Seite 1-7
ISSN Quelle:2753-670X
Abstract:The objective of the study was to improve postoperative risk assessment in congenital heart surgery by developing a machine-learning model based on readily available peri- and postoperative parameters.Our bicentric retrospective data analysis from January 2014 to December 2019 of established risk parameters for dismal outcome was used to train and test a model to predict postoperative survival within the first 30 days. The Freiburg training data consisted of 780 procedures; the Heidelberg test data comprised 985 procedures. STAT mortality score, age, aortic cross-clamp time and postoperative lactate values over 24 h were considered.Our model showed an area under the curve (AUC) of 94.86%, specificity of 89.48% and sensitivity of 85.00%, resulting in 3 false negatives and 99 false positives.The STAT mortality score and the aortic cross-clamp time each showed a statistically highly significant impact on postoperative mortality. Interestingly, a child’s age was barely statistically significant. Postoperative lactate values indicated an increased mortality risk if they were either constantly at a high level or low during the first 8 h postoperatively with an increase afterwards.When considering parameters available before, at the end of and 24 h after surgery, the predictive power of the complete model achieved the highest AUC. This, compared to the already high predictive power alone (AUC 88.9%) of the STAT mortality score, translates to an error reduction of 53.5%.Our model predicts postoperative survival after congenital heart surgery with great accuracy. Compared with preoperative risk assessments, our postoperative risk assessment reduces prediction error by half. Heightened awareness of high-risk patients should improve preventive measures and thus patient safety.
DOI:doi:10.1093/icvts/ivad089
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1093/icvts/ivad089
 DOI: https://doi.org/10.1093/icvts/ivad089
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1870235193
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69142666   QR-Code
zum Seitenanfang