| Online-Ressource |
Verfasst von: | Zürn, Christoph Manuel [VerfasserIn]  |
| Hübner, David [VerfasserIn]  |
| Ziesenitz, Victoria C. [VerfasserIn]  |
| Höhn, René Gerhard Joachim [VerfasserIn]  |
| Schuler, Lena [VerfasserIn]  |
| Schlange, Tim [VerfasserIn]  |
| Gorenflo, Matthias [VerfasserIn]  |
| Kari, Fabian Alexander [VerfasserIn]  |
| Kroll, Johannes [VerfasserIn]  |
| Loukanov, Tsvetomir [VerfasserIn]  |
| Klemm, Rolf [VerfasserIn]  |
| Stiller, Brigitte [VerfasserIn]  |
Titel: | Model-driven survival prediction after congenital heart surgery |
Verf.angabe: | Christoph Zürn, David Hübner, Victoria C. Ziesenitz, René Höhn, Lena Schuler, Tim Schlange, Matthias Gorenflo, Fabian A. Kari, Johannes Kroll, Tsvetomir Loukanov, Rolf Klemm and Brigitte Stiller |
E-Jahr: | 2023 |
Jahr: | September 2023 |
Umfang: | 7 S. |
Illustrationen: | Illustrationen |
Fussnoten: | Online verfügbar: 05. Juni 2023, Artikelversion: 10. September 2023 ; Gesehen am 14.11.2023 |
Titel Quelle: | Enthalten in: Interdisciplinary cardiovascular and thoracic surgery |
Ort Quelle: | Oxford : Oxford University Press, 2023 |
Jahr Quelle: | 2023 |
Band/Heft Quelle: | 37(2023), 3 vom: Sept., Artikel-ID ivad089, Seite 1-7 |
ISSN Quelle: | 2753-670X |
Abstract: | The objective of the study was to improve postoperative risk assessment in congenital heart surgery by developing a machine-learning model based on readily available peri- and postoperative parameters.Our bicentric retrospective data analysis from January 2014 to December 2019 of established risk parameters for dismal outcome was used to train and test a model to predict postoperative survival within the first 30 days. The Freiburg training data consisted of 780 procedures; the Heidelberg test data comprised 985 procedures. STAT mortality score, age, aortic cross-clamp time and postoperative lactate values over 24 h were considered.Our model showed an area under the curve (AUC) of 94.86%, specificity of 89.48% and sensitivity of 85.00%, resulting in 3 false negatives and 99 false positives.The STAT mortality score and the aortic cross-clamp time each showed a statistically highly significant impact on postoperative mortality. Interestingly, a child’s age was barely statistically significant. Postoperative lactate values indicated an increased mortality risk if they were either constantly at a high level or low during the first 8 h postoperatively with an increase afterwards.When considering parameters available before, at the end of and 24 h after surgery, the predictive power of the complete model achieved the highest AUC. This, compared to the already high predictive power alone (AUC 88.9%) of the STAT mortality score, translates to an error reduction of 53.5%.Our model predicts postoperative survival after congenital heart surgery with great accuracy. Compared with preoperative risk assessments, our postoperative risk assessment reduces prediction error by half. Heightened awareness of high-risk patients should improve preventive measures and thus patient safety. |
DOI: | doi:10.1093/icvts/ivad089 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
kostenfrei: Volltext: https://doi.org/10.1093/icvts/ivad089 |
| DOI: https://doi.org/10.1093/icvts/ivad089 |
Datenträger: | Online-Ressource |
Sprache: | eng |
K10plus-PPN: | 1870235193 |
Verknüpfungen: | → Zeitschrift |
Model-driven survival prediction after congenital heart surgery / Zürn, Christoph Manuel [VerfasserIn]; September 2023 (Online-Ressource)