Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Gilberg, Leonard [VerfasserIn]   i
 Teodorescu, Bianca [VerfasserIn]   i
 Maerkisch, Leander [VerfasserIn]   i
 Baumgart, André [VerfasserIn]   i
 Ramaesh, Rishi [VerfasserIn]   i
 Gomes Ataide, Elmer Jeto [VerfasserIn]   i
 Koç, Ali Murat [VerfasserIn]   i
Titel:Deep learning enhances radiologists’ detection of potential spinal malignancies in CT scans
Verf.angabe:Leonard Gilberg, Bianca Teodorescu, Leander Maerkisch, Andre Baumgart, Rishi Ramaesh, Elmer Jeto Gomes Ataide and Ali Murat Koç
E-Jahr:2023
Jahr:13 July 2023
Umfang:11 S.
Fussnoten:Gesehen am 14.11.2023
Titel Quelle:Enthalten in: Applied Sciences
Ort Quelle:Basel : MDPI, 2011
Jahr Quelle:2023
Band/Heft Quelle:13(2023), 14, Artikel-ID 8140, Seite 1-11
ISSN Quelle:2076-3417
Abstract:Incidental spinal bone lesions, potential indicators of malignancies, are frequently underreported in abdominal and thoracic CT imaging due to scan focus and diagnostic bias towards patient complaints. Here, we evaluate a deep-learning algorithm (DLA) designed to support radiologists’ reporting of incidental lesions during routine clinical practice. The present study is structured into two phases: unaided and AI-assisted. A total of 32 scans from multiple radiology centers were selected randomly and independently annotated by two experts. The U-Net-like architecture-based DLA used for the AI-assisted phase showed a sensitivity of 75.0% in identifying potentially malignant spinal bone lesions. Six radiologists of varying experience levels participated in this observational study. During routine reporting, the DLA helped improve the radiologists’ sensitivity by 20.8 percentage points. Notably, DLA-generated false-positive predictions did not significantly bias radiologists in their final diagnosis. These observations clearly indicate that using a suitable DLA improves the detection of otherwise missed potentially malignant spinal cases. Our results further emphasize the potential of artificial intelligence as a second reader in the clinical setting.
DOI:doi:10.3390/app13148140
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.3390/app13148140
 kostenfrei: Volltext: https://www.mdpi.com/2076-3417/13/14/8140
 DOI: https://doi.org/10.3390/app13148140
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:AI detection
 computed tomography
 deep learning
 malignancies
 second reader
 spine
 vertebral lesions
K10plus-PPN:1870249909
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69142701   QR-Code
zum Seitenanfang