Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Hong, Jia-Sheng [VerfasserIn]   i
 Hermann, Ingo [VerfasserIn]   i
 Zöllner, Frank G. [VerfasserIn]   i
 Schad, Lothar R. [VerfasserIn]   i
 Wang, Shuu-Jiun [VerfasserIn]   i
 Lee, Wei-Kai [VerfasserIn]   i
 Chen, Yung-Lin [VerfasserIn]   i
 Chang, Yu [VerfasserIn]   i
 Wu, Yu-Te [VerfasserIn]   i
Titel:Acceleration of magnetic resonance fingerprinting reconstruction using denoising and self-attention pyramidal convolutional neural network
Verf.angabe:Jia-Sheng Hong, Ingo Hermann, Frank Gerrit Zöllner, Lothar R. Schad, Shuu-Jiun Wang, Wei-Kai Lee, Yung-Lin Chen, Yu Chang and Yu-Te Wu
E-Jahr:2022
Jahr:7 February 2022
Umfang:17 S.
Fussnoten:Gesehen am 14.11.2023
Titel Quelle:Enthalten in: Sensors
Ort Quelle:Basel : MDPI, 2001
Jahr Quelle:2022
Band/Heft Quelle:22(2022), 3, Artikel-ID 1260, Seite 1-17
ISSN Quelle:1424-8220
Abstract:Magnetic resonance fingerprinting (MRF) based on echo-planar imaging (EPI) enables whole-brain imaging to rapidly obtain T1 and T2* relaxation time maps. Reconstructing parametric maps from the MRF scanned baselines by the inner-product method is computationally expensive. We aimed to accelerate the reconstruction of parametric maps for MRF-EPI by using a deep learning model. The proposed approach uses a two-stage model that first eliminates noise and then regresses the parametric maps. Parametric maps obtained by dictionary matching were used as a reference and compared with the prediction results of the two-stage model. MRF-EPI scans were collected from 32 subjects. The signal-to-noise ratio increased significantly after the noise removal by the denoising model. For prediction with scans in the testing dataset, the mean absolute percentage errors between the standard and the final two-stage model were 3.1%, 3.2%, and 1.9% for T1, and 2.6%, 2.3%, and 2.8% for T2* in gray matter, white matter, and lesion locations, respectively. Our proposed two-stage deep learning model can effectively remove noise and accurately reconstruct MRF-EPI parametric maps, increasing the speed of reconstruction and reducing the storage space required by dictionaries.
DOI:doi:10.3390/s22031260
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.3390/s22031260
 kostenfrei: Volltext: https://www.mdpi.com/1424-8220/22/3/1260
 DOI: https://doi.org/10.3390/s22031260
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:denoising convolutional neural network
 echo-planar imaging
 feature pyramid network
 magnetic resonance fingerprinting
 self-attention
 T1 and T2* relaxation times
K10plus-PPN:1870252071
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69142709   QR-Code
zum Seitenanfang