| Online-Ressource |
Verfasst von: | Hong, Jia-Sheng [VerfasserIn]  |
| Hermann, Ingo [VerfasserIn]  |
| Zöllner, Frank G. [VerfasserIn]  |
| Schad, Lothar R. [VerfasserIn]  |
| Wang, Shuu-Jiun [VerfasserIn]  |
| Lee, Wei-Kai [VerfasserIn]  |
| Chen, Yung-Lin [VerfasserIn]  |
| Chang, Yu [VerfasserIn]  |
| Wu, Yu-Te [VerfasserIn]  |
Titel: | Acceleration of magnetic resonance fingerprinting reconstruction using denoising and self-attention pyramidal convolutional neural network |
Verf.angabe: | Jia-Sheng Hong, Ingo Hermann, Frank Gerrit Zöllner, Lothar R. Schad, Shuu-Jiun Wang, Wei-Kai Lee, Yung-Lin Chen, Yu Chang and Yu-Te Wu |
E-Jahr: | 2022 |
Jahr: | 7 February 2022 |
Umfang: | 17 S. |
Fussnoten: | Gesehen am 14.11.2023 |
Titel Quelle: | Enthalten in: Sensors |
Ort Quelle: | Basel : MDPI, 2001 |
Jahr Quelle: | 2022 |
Band/Heft Quelle: | 22(2022), 3, Artikel-ID 1260, Seite 1-17 |
ISSN Quelle: | 1424-8220 |
Abstract: | Magnetic resonance fingerprinting (MRF) based on echo-planar imaging (EPI) enables whole-brain imaging to rapidly obtain T1 and T2* relaxation time maps. Reconstructing parametric maps from the MRF scanned baselines by the inner-product method is computationally expensive. We aimed to accelerate the reconstruction of parametric maps for MRF-EPI by using a deep learning model. The proposed approach uses a two-stage model that first eliminates noise and then regresses the parametric maps. Parametric maps obtained by dictionary matching were used as a reference and compared with the prediction results of the two-stage model. MRF-EPI scans were collected from 32 subjects. The signal-to-noise ratio increased significantly after the noise removal by the denoising model. For prediction with scans in the testing dataset, the mean absolute percentage errors between the standard and the final two-stage model were 3.1%, 3.2%, and 1.9% for T1, and 2.6%, 2.3%, and 2.8% for T2* in gray matter, white matter, and lesion locations, respectively. Our proposed two-stage deep learning model can effectively remove noise and accurately reconstruct MRF-EPI parametric maps, increasing the speed of reconstruction and reducing the storage space required by dictionaries. |
DOI: | doi:10.3390/s22031260 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
kostenfrei: Volltext: https://doi.org/10.3390/s22031260 |
| kostenfrei: Volltext: https://www.mdpi.com/1424-8220/22/3/1260 |
| DOI: https://doi.org/10.3390/s22031260 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | denoising convolutional neural network |
| echo-planar imaging |
| feature pyramid network |
| magnetic resonance fingerprinting |
| self-attention |
| T1 and T2* relaxation times |
K10plus-PPN: | 1870252071 |
Verknüpfungen: | → Zeitschrift |
Acceleration of magnetic resonance fingerprinting reconstruction using denoising and self-attention pyramidal convolutional neural network / Hong, Jia-Sheng [VerfasserIn]; 7 February 2022 (Online-Ressource)