Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Bastian, Peter [VerfasserIn]   i
 Scheichl, Robert [VerfasserIn]   i
 Seelinger, Linus [VerfasserIn]   i
 Strehlow, Arne [VerfasserIn]   i
Titel:Multilevel spectral domain decomposition
Verf.angabe:Peter Bastian, Robert Scheichl, Linus Seelinger, and Arne Strehlow
E-Jahr:2023
Jahr:Jun 2023
Umfang:26 S.
Illustrationen:Illustrationen
Fussnoten:Online veröffentlicht: 31. January 2022 ; Gesehen am 20.11.2023
Titel Quelle:Enthalten in: Society for Industrial and Applied MathematicsSIAM journal on scientific computing
Ort Quelle:Philadelphia, Pa. : SIAM, 1993
Jahr Quelle:2023
Band/Heft Quelle:45(2023), 3 vom: Juni, Seite S1-S26
ISSN Quelle:1095-7197
Abstract:Highly heterogeneous, anisotropic coefficients, e.g., in the simulation of carbon-Fiber composite components, can lead to extremely challenging finite element systems. Direct solvers for the resulting large and sparse linear systems suffer from severe memory requirements and limited parallel scalability, while iterative solvers in general lack robustness. Two-level spectral domain decomposition methods can provide such robustness for symmetric positive definite linear systems by using coarse spaces based on independent generalized eigenproblems in the subdomains. Rigorous condition number bounds are independent of mesh size, number of subdomains, and coefficient contrast. However, their parallel scalability is still limited by the fact that (in order to guarantee robustness) the coarse problem is solved via a direct method. In this paper, we introduce a multilevel variant in the context of subspace correction methods and provide a general convergence theory for its robust convergence for abstract, elliptic variational problems. Assumptions of the theory are verified for conforming as well as for discontinuous Galerkin methods applied to a scalar diffusion problem. Numerical results illustrate the performance of the method for two- and three-dimensional problems and for various discretization schemes, in the context of scalar diffusion and linear elasticity.
DOI:doi:10.1137/21M1427231
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1137/21M1427231
 Volltext: https://epubs.siam.org/doi/10.1137/21M1427231
 DOI: https://doi.org/10.1137/21M1427231
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1870638581
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69144276   QR-Code
zum Seitenanfang