Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Legnar, Maximilian [VerfasserIn]   i
 Daumke, Philipp [VerfasserIn]   i
 Hesser, Jürgen [VerfasserIn]   i
 Porubsky, Stefan [VerfasserIn]   i
 Popovic, Zoran V. [VerfasserIn]   i
 Bindzus, Jan Niklas [VerfasserIn]   i
 Siemoneit, Jörn-Helge [VerfasserIn]   i
 Weis, Cleo-Aron Thias [VerfasserIn]   i
Titel:Natural language processing in diagnostic texts from nephropathology
Verf.angabe:Maximilian Legnar, Philipp Daumke, Jürgen Hesser, Stefan Porubsky, Zoran Popovic, Jan Niklas Bindzus, Joern-Helge Heinrich Siemoneit and Cleo-Aron Weis
E-Jahr:2022
Jahr:15 July 2022
Umfang:25 S.
Fussnoten:Dieser Artikel gehört zum Special issue: Artificial Intelligence in pathological image analysis ; Gesehen am 05.12.2023
Titel Quelle:Enthalten in: Diagnostics
Ort Quelle:Basel : MDPI, 2011
Jahr Quelle:2022
Band/Heft Quelle:12(2022), 7, Artikel-ID 1726, Seite 1-25
ISSN Quelle:2075-4418
Abstract:Introduction: This study investigates whether it is possible to predict a final diagnosis based on a written nephropathological description—as a surrogate for image analysis—using various NLP methods. Methods: For this work, 1107 unlabelled nephropathological reports were included. (i) First, after separating each report into its microscopic description and diagnosis section, the diagnosis sections were clustered unsupervised to less than 20 diagnostic groups using different clustering techniques. (ii) Second, different text classification methods were used to predict the diagnostic group based on the microscopic description section. Results: The best clustering results (i) could be achieved with HDBSCAN, using BoW-based feature extraction methods. Based on keywords, these clusters can be mapped to certain diagnostic groups. A transformer encoder-based approach as well as an SVM worked best regarding diagnosis prediction based on the histomorphological description (ii). Certain diagnosis groups reached F1-scores of up to 0.892 while others achieved weak classification metrics. Conclusion: While textual morphological description alone enables retrieving the correct diagnosis for some entities, it does not work sufficiently for other entities. This is in accordance with a previous image analysis study on glomerular change patterns, where some diagnoses are associated with one pattern, but for others, there exists a complex pattern combination.
DOI:doi:10.3390/diagnostics12071726
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.3390/diagnostics12071726
 kostenfrei: Volltext: https://www.mdpi.com/2075-4418/12/7/1726
 DOI: https://doi.org/10.3390/diagnostics12071726
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:BERT
 deep learning
 machine learning
 nephropathology
 NLP
 text analysis
 text classification
 topic modelling
 transformer encoder
K10plus-PPN:187192023X
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69149503   QR-Code
zum Seitenanfang