Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Remme, Roman [VerfasserIn]   i
 Kaczun, Tobias [VerfasserIn]   i
 Scheurer, Maximilian [VerfasserIn]   i
 Dreuw, Andreas [VerfasserIn]   i
 Hamprecht, Fred [VerfasserIn]   i
Titel:KineticNet
Titelzusatz:deep learning a transferable kinetic energy functional for orbital-free density functional theory
Verf.angabe:R. Remme, T. Kaczun, M. Scheurer, A. Dreuw and F.A. Hamprecht
E-Jahr:2023
Jahr:13 October 2023
Umfang:14 S.
Fussnoten:Gesehen am 22.12.2023
Titel Quelle:Enthalten in: The journal of chemical physics
Ort Quelle:Melville, NY : American Institute of Physics, 1933
Jahr Quelle:2023
Band/Heft Quelle:159(2023), 14, Artikel-ID 144113, Seite [1], 1-13
ISSN Quelle:1089-7690
Abstract:Orbital-free density functional theory (OF-DFT) holds promise to compute ground state molecular properties at minimal cost. However, it has been held back by our inability to compute the kinetic energy as a functional of electron density alone. Here, we set out to learn the kinetic energy functional from ground truth provided by the more expensive Kohn-Sham density functional theory. Such learning is confronted with two key challenges: Giving the model sufficient expressivity and spatial context while limiting the memory footprint to afford computations on a GPU and creating a sufficiently broad distribution of training data to enable iterative density optimization even when starting from a poor initial guess. In response, we introduce KineticNet, an equivariant deep neural network architecture based on point convolutions adapted to the prediction of quantities on molecular quadrature grids. Important contributions include convolution filters with sufficient spatial resolution in the vicinity of nuclear cusp, an atom-centric sparse but expressive architecture that relays information across multiple bond lengths, and a new strategy to generate varied training data by finding ground state densities in the face of perturbations by a random external potential. KineticNet achieves, for the first time, chemical accuracy of the learned functionals across input densities and geometries of tiny molecules. For two-electron systems, we additionally demonstrate OF-DFT density optimization with chemical accuracy.
DOI:doi:10.1063/5.0158275
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1063/5.0158275
 Volltext: https://pubs.aip.org/aip/jcp/article/159/14/144113/2916356
 DOI: https://doi.org/10.1063/5.0158275
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1876922923
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69156095   QR-Code
zum Seitenanfang