Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Bender, Carl M. [VerfasserIn]   i
 Karapoulitidis, Christos [VerfasserIn]   i
 Klevansky, Sandra Pamela [VerfasserIn]   i
Titel:Dyson-Schwinger equations in zero dimensions and polynomial approximations
Verf.angabe:Carl M. Bender, C. Karapoulitidis, and S.P. Klevansky
E-Jahr:2023
Jahr:1 September 2023
Umfang:20 S.
Fussnoten:Gesehen am 16.01.2024
Titel Quelle:Enthalten in: Physical review
Ort Quelle:Ridge, NY : American Physical Society, 2016
Jahr Quelle:2023
Band/Heft Quelle:108(2023), 5, Artikel-ID 056002, Seite 1-20
ISSN Quelle:2470-0029
Abstract:The Dyson-Schwinger (DS) equations for a quantum field theory in D-dimensional space-time are an infinite sequence of coupled integro-differential equations that are satisfied exactly by the Green’s functions of the field theory. This sequence of equations is underdetermined because if the infinite sequence of DS equations is truncated to a finite sequence, there are always more Green’s functions than equations. An approach to this problem is to close the finite system by setting the highest Green’s function(s) to zero. One can examine the accuracy of this procedure in D=0 because in this special case the DS equations are just a sequence of coupled polynomial equations whose roots are the Green’s functions. For the closed system one can calculate the roots and compare them with the exact values of the Green’s functions. This procedure raises a general mathematical question: When do the roots of a sequence of polynomial approximants to a function converge to the exact roots of that function? Some roots of the polynomial approximants may (i) converge to the exact roots of the function, or (ii) approach the exact roots at first and then veer away, or (iii) converge to limiting values that are unequal to the exact roots. In this study five field-theory models in D=0 are examined, Hermitian ϕ4 and ϕ6 theories and non-Hermitian iϕ3, −ϕ4, and −iϕ5 theories. In all cases the sequences of roots converge to limits that differ by a few percent from the exact answers. Sophisticated asymptotic techniques are devised that increase the accuracy to one part in 107. Part of this work appears in abbreviated form in Phys. Rev. Lett. 130, 101602 (2023).
DOI:doi:10.1103/PhysRevD.108.056002
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1103/PhysRevD.108.056002
 Volltext: https://link.aps.org/doi/10.1103/PhysRevD.108.056002
 DOI: https://doi.org/10.1103/PhysRevD.108.056002
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1878236709
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69161713   QR-Code
zum Seitenanfang